
www.manaraa.com

Graduate Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

2011

Natural oil-based composites reinforced with
natural fillers, and conjugation/isomerization of
carbon-carbon double bonds
Rafael Lopes Quirino
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/etd

Part of the Chemistry Commons

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University
Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University
Digital Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Quirino, Rafael Lopes, "Natural oil-based composites reinforced with natural fillers, and conjugation/isomerization of carbon-carbon
double bonds" (2011). Graduate Theses and Dissertations. 10316.
https://lib.dr.iastate.edu/etd/10316

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F10316&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F10316&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F10316&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F10316&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F10316&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F10316&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/131?utm_source=lib.dr.iastate.edu%2Fetd%2F10316&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd/10316?utm_source=lib.dr.iastate.edu%2Fetd%2F10316&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu


www.manaraa.com

Natural oil-based composites reinforced with natural fillers, and 
conjugation/isomerization of carbon-carbon double bonds 

 

by 

 

Rafael Lopes Quirino 

 

 

A dissertation submitted to the graduate faculty 

In partial fulfillment of the requirements for the degree of 

DOCTOR OF PHILOSOPHY 

 

 

Major: Chemistry 

Program of Study Committee: 
Richard C. Larock, Co-major Professor 
Michael Kessler, Co-major Professor 

Malika El-Jeffries 
John Verkade 

Yan Zhao 
 

 

 

 

 

Iowa State University 

Ames, Iowa 

2011 

Copyright © Rafael Lopes Quirino 2011. All rights reserved. 



www.manaraa.com

  ii 

To Larissa, Gabriela, Nathan, Alba, Hélcio, Vera, Waldir, Letícia and Igor 

for their unconditional love and support 



www.manaraa.com

  iii 

 

TABLE OF CONTENTS 

LIST OF ABREVIATIONS v 

ABSTRACT vii 

CHAPTER 1. GENERAL INTRODUCTION 1 
Preface 1 
Dissertation Organization 7 
References 8 

CHAPTER 2. SYNTHESIS AND PROPERTIES OF SOY HULL-REINFORCED 
BIOCOMPOSITES FROM CONJUGATED SOYBEAN OIL 10 

Abstract  10 
Introduction  11 
Experimental  13 
Results and Discussion  15 
Conclusions  34 
Acknowledgements  35 
References  35 

CHAPTER 3. RICE HULL BIOCOMPOSITES. PART 1: PREPARATION OF A 
LINSEED OIL-BASED RESIN REINFORCED WITH RICE HULLS 37 

Abstract  37 
Introduction  37 
Experimental  39 
Results and Discussion  42 
Conclusions  62 
Acknowledgements  62 
References  63 

CHAPTER 4. RICE HULL BIOCOMPOSITES. PART 2: EFFECT OF THE 
RESIN COMPOSITION ON THE PROPERTIES OF THE COMPOSITE 65 

Abstract  65 
Introduction  66 
Experimental  68 
Results and Discussion  71 
Conclusions  87 
Acknowledgements  88 
References  88 



www.manaraa.com

  iv 

CHAPTER 5. SOYBEAN AND LINSEED OIL-BASED COMPOSITES 
REINFORCED WITH WOOD FLOUR AND WOOD FIBERS 90 

Abstract  90 
Introduction  91 
Experimental  93 
Results and Discussion  96 
Conclusions  112 
Acknowledgements  113 
References  114 

CHAPTER 6. SUGAR-CANE BAGASSE COMPOSITES FROM VEGETABLE 
OILS 116 

Abstract  116 
Introduction  116 
Experimental  119 
Results and Discussion  122 
Conclusion  137 
Acknowledgements  138 
References  138 

CHAPTER 7. OAT HULL COMPOSITES FROM CONJUGATED NATURAL 
OILS 141 

Abstract  141 
Introduction  141 
Experimental  145 
Results and Discussion  147 
Conclusion  162 
Acknowledgements  164 
References  164 

CHAPTER 8. Rh-BASED BIPHASIC ISOMERIZATION OF CARBON-
CARBON DOUBLE BONDS 166 

Abstract  166 
Introduction  166 
Experimental  170 
Results and Discussion  175 
Conclusion  192 
Acknowledgements  193 
References  193 

CHAPTER 9. GENERAL CONCLUSIONS 196 

ACKNOWLEDGEMENTS 202 

CURRICULUM VITAE 203 



www.manaraa.com

  v 

LIST OF ABREVIATIONS 

1H NMR proton nuclear magnetic resonance 
AA acrylic acid 

ADMET acyclic diene metathesis 
AIBN azobisisobutyronitrile 

ASTM American Society for Testing and Materials 
BMA n-butyl methacrylate 

CCO conjugated corn oil 
CFO conjugated fish oil 

CLA conjugated linoleic acid 
CLO conjugated linseed oil 

CSO conjugated soybean oil 
CTAB cetyltrimethylammonium bromide 

DCPD dicyclopentadiene 
DHA docosa-4,7,10,13,16,19-hexaenoic acid 

DMA dynamic mechanical analysis 
dppba 4-(diphenylphosphino)benzoic acid 

DSC differential scanning calorimetry 
DTA derivative of thermogravimetric analysis 

DVB divinylbenzene 
E Young’s modulus 

E’ storage modulus 
E” loss modulus 

EPA eicosa-5,8,11,14,17-pentaenoic acid 
EtOH ethanol 

GC/MS gas chromatography/mass spectrometry 
HDPE high density polyethylene 

i-PrOH 2-propanol 
ICP-MS induced coupled plasma-mass spectrometry 

MA maleic anhydride 
MeOH methanol 



www.manaraa.com

  vi 

PP polypropylene 
PrOH propanol 

PTS polyoxyethanyl-α-tocopheryl sebacate 
ROMP ring opening metathesis polymerization 

SDS sodium dodecyl sulfate 
SEM scanning electron microscopy 

SH soybean hulls 
SOY soybean oil 

ST styrene 
t-BuOH tert-butanol 

T10 temperature at 10% weight loss 
T50 temperature at 50% weight loss 

T7 temperature at 7% weight degradation 
T95 temperature at 95% weight loss 

TBPO di-t-butyl peroxide 
Tf temperature after which no weight loss is 

detected 
Tg glass transition temperature 

TGA thermogravimetric  
Tmax temperature at maximum degradation rate 

tppms triphenylphosphine monosulfonate sodium 
salt 

tppts triphenylphosphine-3,3',3''-trisulfonic acid 
trisodium salt 

ttp tris-p-tolylphosphine 
TUN tung oil 

 



www.manaraa.com

  vii 

ABSTRACT 

 

 The tensile and flexural properties of new thermosetting composites made by the free 

radical polymerization of natural oil-based resins reinforced with natural fillers have been 

determined for various oils, fillers, and resin compositions. Tung, and conjugated corn, 

soybean, linseed, and fish oils have been co-polymerized with varying amounts of 

divinylbenzene (0-15 wt %), dicyclopentadiene (0-10 wt %), n-butyl methacrylate (20-35 wt 

%), and maleic anhydride (0-15 wt %). The natural fillers used include widely produced and 

underused agricultural residues, such as sugar-cane bagasse, soybean, rice, and oat hulls, as 

well as residues from the wood industry, such as wood flours and wood fibers. The thermal 

stability of the new materials has been determined by TGA and the wt % of monomer 

incorporation has been calculated after Soxhlet extraction and analysis of the extracts by 1H 

NMR. Scanning electron microscopy of selected samples revealed improvement on the filler-

resin interaction for samples containing maleic anhydride. Composites with Young’s 

modulus and tensile strength as high as 4.3 GPa and 17.6 MPa, respectively, have been 

prepared. The materials obtained show promising application in the automotive, aerospace 

and housing industries as decorative, light-weight panels. The conjugation of the oils used in 

this study involves the use of an efficient homogeneous Rh catalyst that is completely 

discarded after the reaction. The conversion of that catalyst into a biphasic system can turn 

this reaction into an economically viable, and greener process. In the present work, we have 

optimized the conversion of the homogeneous catalyst [RhCl2(C8H14)2]2 into a complex that 

works under biphasic conditions for the conjugation/positional isomerization of carbon-

carbon double bonds. A maximum yield of 96% has been obtained at optimal conditions 

using soybean oil as the substrate. 



www.manaraa.com

  1 

 

CHAPTER 1. GENERAL INTRODUCTION 

Portions of the General Introduction have been adapted from a book chapter 

published in the ACS Symposium series book Renewable and Sustainable Polymers, as well 

as from a chapter submitted for inclusion in the book Sustainable Composites and Advanced 

Materials by Destech Publications. 

Preface 

With the tremendous commercial importance of the plastics and coatings industries, it 

is obvious that the replacement of petroleum-based materials by useful novel bioplastics from 

inexpensive, renewable, natural resources, like natural oils and agricultural residues, has an 

enormous impact economically, environmentally, and energy-wise. The advantages of bio-

based materials are their ready availability in large quantities, their usually competitive price 

in comparison to currently used petroleum-based monomers, the potential of producing more 

bio-degradable materials than virtually indestructible petroleum-based polymers, the 

possibility of producing new materials with properties not currently available in commercial 

petroleum-based products, and the overall intrinsic low toxicity of such bio-based products. 

The use of renewable resources in energy and material-related applications is 

receiving increasing attention in both industry and academia. Several factors contribute to 

frequent dramatic fluctuations in the price of oil, which is reflected in the production cost of 

all petroleum-based goods. This situation creates an urgent need, from an industrial point of 

view, for starting materials from an alternative source. For the reasons mentioned earlier, bio-

based products have the potential to partially replace petroleum-based materials. Thus, 
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research and development of new biopolymers is extremely important in attaining oil 

independence and sustainable industrial development. 

Currently, the polymer industry is responsible for approximately 7 % of all oil and 

gas used worldwide.1 As a matter of fact, 15 % of all soybean oil produced from 2001 to 

2005 was employed for industrial uses.2 Besides vegetable oils, other widely used renewable 

raw materials are polysaccharides (cellulose and starch), wood, and proteins.3 A variety of 

chemicals have been prepared from these starting materials. Bio-oil and syngas are obtained 

by the pyrolysis of wood and agricultural wastes.4 Proteins are denatured and aligned during 

processing to make protein-based biopolymers,5 and vegetable oils find uses in paints,6 bio-

coatings,7 biofuels,8 and as building blocks for bio-based polymers.9 

Recently, a variety of vegetable oil-based polymers with good thermal and 

mechanical properties have been developed through the cationic, free radical, or thermal 

copolymerization of regular and conjugated natural oils with several petroleum-based 

comonomers.9,10 Other polymerization methods, such as ring-opening metathesis 

polymerization (ROMP) and acyclic diene metathesis (ADMET),9,11 have also been recently 

employed to synthesize vegetable oil-based polymers. Bio-based materials with improved 

thermophysical and mechanical properties can be obtained by simply reinforcing the 

aforementioned polymeric matrices with inorganic fillers and natural fibers.12-17 Various 

agricultural residues and natural fibers, such as spent germ,14 corn stover,15 wheat straw,16 

and switch grass17 have been added to the aforementioned vegetable oil-based resins to 

prepare biocomposites with up to 85 wt % of bio-based content. 
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The general chemical structure of natural oils consists of triglycerides of various fatty 

acid compositions. The main difference between different natural oils is the length of the 

fatty acid chains, the number and the position of the carbon-carbon double bonds along those 

fatty acid chains, and the presence of specific functional groups. These characteristics of the 

oils vary according to the plants from which the oils are extracted and their corresponding 

growing conditions.18 A common representation of a triglyceride is given in Figure 1, along 

with the chemical structure of the most abundant fatty acids found in natural oils. Table I 

summarizes the fatty acid composition of the most commonly used oils. 

As can be seen from Figure 1 and Table I, naturally-occurring fatty acids contain an 

even number of carbons, and most of the carbon-carbon double bonds present in the 

unsaturated fatty acids have a cis configuration. Furthermore, some fatty acids, such as 

ricinoleic acid, bear functional groups on specific positions along the fatty acid chain. 

In natural oil-based systems, one of the important reactive sites in the triglyceride is 

the carbon-carbon double bonds. Overall, the reactivity of vegetable oils towards cationic and 

free radical polymerization processes is significantly higher if the carbon-carbon double 

bonds in the fatty acid chains are conjugated.19 For the remainder of this dissertation, the 

term “conjugated” refers to carbon-carbon double bonds that are conjugated (as in a 1,3-

diene). 

Conjugated vegetable oils from the isomerization of carbon-carbon double bonds 

have been initially reported as by-products of reactions involving vegetable oils.20 Since then, 

the production of conjugated fatty acids and triglycerides using heterogeneous catalysts has 

been studied and optimized.21 
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Figure 1. (A) General chemical structure of a vegetable oil. (B) Most common fatty acids 
present in vegetable oils and their chemical structures. 
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Table I. Fatty acid composition of vegetable oils commonly used in the preparation of new 
bio-based materials. 

Oil Linolenic acid 
content (%) 

Linoleic acid 
content (%) 

Oleic acid 
content (%) 

Stearic acid 
content (%) 

Palmitic acid 
content (%) 

Tunga - 9 4 - 6 
Linseed 57 15 19 4 6 
Walnut 3 73 18 1 5 
Low 
saturation 
soybean 

9 57 31 1 3 

Safflower - 78 12 2 7 
Sunflower 1 54 37 3 5 
Soybean 8 53 23 4 11 
Corn 1 60 25 2 11 
Grapeseed - 63 27 3 7 
Canola 9 21 61 2 4 
Sesame 1 43 41 6 9 
Peanut - 32 47 2 11 
Olive 1 6 80 3 9 
Castorb 1 4 5 1 2 
Fishc - - 11-25 - 10-22 

a Approximately 84 % of the fatty acid chains in tung oil are alpha-eleostearic acid, a 
naturally conjugated triene (12). 
b Approximately 85 % of the fatty acid chains in castor oil are ricinoleic acid. 
c Approximately 32% of the fatty acid chains in fish oil are eicosa-5,8,11,14,17-pentaenoic 
acid (EPA) and approximately 25% of the fatty acid chains are docosa-4,7,10,13,16,19-
hexaenoic acid (DHA) 

 

Conjugated vegetable oils are also useful as drying oils for paints and coatings.19 

While some natural oils can be used without further structural modification to produce 

coatings,22 cheaper and more readily available vegetable oils can be conjugated in order to 

increase their drying properties and reduce production costs.19 Conjugated vegetable oils can 
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also be used as a source of conjugated linoleic acid (CLA).19 CLA has been shown to possess 

anti-cancer and anti-atherosclerosis activity, and serves as a fat reducing agent.19 Vegetable 

oils with a high content of linoleic acid have great potential for the production of CLA upon 

conjugation. 

Several conjugation processes for vegetable oils have been developed to date.19-21 In 

most of these processes, transition metal hydrides interact with the unsaturation in the 

triglyceride through an addition-elimination mechanism and the carbon-carbon double bonds 

“move” along the fatty acid chain to yield conjugated species. A very efficient homogeneous 

conjugation system that uses a Rh-based pre-catalyst ([RhCl(C8H14)2]2) has given more than 

95% conversion for several natural oils.19 The conjugation of vegetable oils in the presence 

of this catalyst system has been carried out under mild reaction conditions and affords very 

little in the way of hydrogenated species, a typical side product in such processes.19 Although 

very efficient, this catalyst is usually completely discarded after conjugation. Being a 

homogeneous catalyst, filtration of the products to recover the metal complex is very difficult 

and time consuming. Therefore, the catalyst's reuse is currently not an attractive process, 

despite its high price.  

Finding a recyclable and reusable catalyst for the conjugation of triglycerides 

represents a key step towards the development of greener technologies for preparing 

conjugated natural oils. Many alternatives to homogeneous catalysts have been proposed, 

including solid catalysts.21 More recently, polymer-bound complexes, and active species 

tethered to inorganic supports have shown reactivities similar to their homogeneous 

counterparts, with the advantage of being more easily recoverable.23 
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Along those lines, an interesting alternative is an ethanol-soluble complex that works 

under biphasic conditions. This catalyst has the potential advantage of using an 

environmentally-friendly solvent and being easily recovered using simple liquid/liquid 

separation techniques for subsequent use, without the need for further purification of the 

active species or the products. 

The technology involved in the new natural oil-based materials and products 

investigated here is remarkably simple and should be readily adapted to existing industry. 

The transition from petroleum to bio-based products provides major economical advantages, 

and even more importantly, generates more environmentally-friendly processes and products. 

Dissertation Organization 

This dissertation is divided into seven chapters. The tensile and flexural properties of 

new thermosetting composites made by the free radical polymerization of a conjugated 

soybean oil-based resin reinforced with soybean hulls are discussed in the first chapter. The 

effects of reinforcement particle size and filler/resin ratio have been assessed, as well as the 

thermal stability and the wt % of oil incorporation into the new materials. In this study, the 

resin is initially composed of conjugated soybean oil (CSO), divinylbenzene (DVB), and n-

butyl methacrylate (BMA). Dicyclopentadiene (DCPD) has been tested as a potential cheaper 

crosslinker substitute for DVB. 

The second and third chapters deal with conjugated linseed oil (CLO)-based free 

radical thermosets reinforced with rice hulls. The second chapter focuses on a cure sequence 

study and on the effect of different parameters, such as pressure, filler load, drying and 

grinding of the filler on the final properties of the composites, while the third chapter focuses 



www.manaraa.com

  8 

 

on a study of the effects of the resin composition on composite properties. A comparison 

between CLO and CSO as the major resin component has been carried out, and maleic 

anhydride (MA) has been added to the formulation as a filler-resin compatibilizer. 

In the fourth chapter, a detailed analysis of the influence of the cure time on the 

properties of composites consisting of a CLO- or CSO-based thermoset reinforced with wood 

flour and wood fibers is presented, and in the fifth chapter, the post-cure process of vegetable 

oil-based thermosets reinforced with washed sugar-cane bagasse is studied in detail. 

Important observations about the initial washing and drying of the filler indicate that these 

processes have an impact on the final properties of the composites. The sixth chapter is 

concerned with structure-property relationships of oat hull composites prepared from various 

regular and conjugated natural oils as the major resin components. 

The biphasic conjugation of soybean and other natural oils, as well as the positional 

isomerization of various alkenes, has been examined using a biphasic rhodium catalyst. This 

study and the corresponding results are described and discussed in detail in the seventh 

chapter. 
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CHAPTER 2. SYNTHESIS AND PROPERTIES OF SOY HULL-REINFORCED 

BIOCOMPOSITES FROM CONJUGATED SOYBEAN OIL 

A Paper Published in Journal of Applied Polymer Science, 112, 2033-2043. 
Copyright © 2009, Wiley-Blackwell  

Rafael L. Quirino, Richard C. Larock* 

Department of Chemistry, Iowa State University, Ames, Iowa 50011 

 

Abstract 

The tensile and flexural properties of new thermosetting composites made by the free 

radical polymerization of a conjugated soybean oil-based resin reinforced with soy hulls have 

been determined for various resin compositions. The effects of reinforcement particle size 

and filler/resin ratio have been assessed. The thermal stability of the new materials has been 

determined by TGA and the wt % of oil incorporation has been calculated after Soxhlet 

extraction (the extracts have been identified by 1H NMR spectroscopy). The resin consists 

initially of 50 wt % conjugated soybean oil and varying amounts of divinylbenzene (5-15 wt 

%), dicyclopentadiene (0-10 wt%) and n-butyl methacrylate (25-35 wt %). Two soy hull 

particle sizes have been tested (<177 µm and <425 µm) and two different filler/resin ratios 

have been compared (50:50 and 60:40). An appropriate cure sequence has been established 

by DSC analysis. The results show a decrease in the properties whenever divinylbenzene or 

n-butyl methacrylate is substituted by dicyclopentadiene. Also, larger particle sizes and 

higher filler/resin ratios are found to have a negative effect on the tensile properties of the 

new materials. 
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Introduction 

 The replacement of petroleum-based products by materials prepared from natural 

biorenewable resources has been intensively investigated in recent years in an attempt to 

reduce man's dependence on crude oil. One promising approach involves the use of vegetable 

oils in substitution or in addition to petroleum derivatives. Interesting applications as 

biofuels,1 coatings2 and biomaterials3 (biopolymers and biocomposites) have been reported. 

 The use of vegetable oils as comonomers in the synthesis of new biopolymers is 

known and a variety of processes and materials have already been reported in the literature 

using different vegetable oils.4-6 A simple and promising procedure that yields thermosets 

with unique mechanical properties involves the reaction of the carbon-carbon double bonds 

in the fatty acid chains of triglycerides with other reactive monomers (divinylbenzene, 

styrene, acrylonitrile, dienes, acrylates, etc.) to form a network of crosslinked polymer 

chains. These materials can be obtained through cationic,7-10 thermal11,12 or free radical 

polymerization.13,14 Initially, our group focused on the development of new resins using a 

range of vegetable oils, including soybean,7,10,14 corn,8 tung11 and linseed12,13 oils. 

 Soybeans are among America's largest crops, being mainly used in the food industry. 

Soybean oil represents a readily available and low cost starting material that can be used for 

the purposes indicated earlier.1-3 The fatty acid composition of soybean oil is as follows: 51% 

linoleic acid (C18:2), 23% oleic acid (C18:1), 10% palmitic acid (C16:0), 7% linolenic acid 

(C18:3), 4% stearic acid (C18:0) and 5% of other fatty acids in negligible amounts.15 

 With an average of 4.5 double bonds per triglyceride,10 soybean oil is only 

moderately active towards free radical species, but the reactivity can be considerably 
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increased by conjugation of the carbon-carbon double bonds of the fatty acid chains. Several 

studies regarding the double bond isomerization of vegetable oils have been reported in the 

literature.16-19 Our group has developed a homogeneous isomerization procedure employing 

[RhCl(C8H14)2]2 as a pre-catalyst.20 The reaction yields >95% conjugation for several 

vegetable oils tested and has been used frequently in our work on bioplastics.7,13,21-24 

 Free radical resins developed in our group so far include conjugated linseed oil-13 and 

conjugated soybean oil-14 containing biopolymers. The results obtained in these studies 

revealed that a vegetable oil content ranging from 40 wt % to 65 wt % maximizes the oil 

incorporation in the final matrix.14 More recently, in an attempt to obtain stronger materials, 

we have reported the preparation and properties of composites containing a tung oil-based 

resin (cured by free radical polymerization) reinforced with spent germ, an underused 

agricultural by-product from wet mill ethanol production.25 

 Soy hulls, another example of an abundant underused agricultural by-product, are 

essentially the outer skin of the soybean.26 They are normally used as a low cost feedstock or 

discarded during processing of the soybeans. The large quantity of soy hulls produced and 

their lack of industrial application account for their low price.27 The chemical composition of 

soy hulls is approximately 11% protein, 11% galactomannans, 12% acidic polysaccharides, 

10% xylan hemicelluose, 40% cellulose and 16% lignin.27 Due to their relatively high fiber 

content (lignin, cellulose and hemicellulose), low cost and ready availability, soy hulls are 

particularly attractive as an economical and environmentally-friendly reinforcement for 

biocomposites. 

 In this work, we've studied the mechanical and flexural properties of composites 
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prepared from conjugated soybean oil (CSO) reinforced with soy hulls. An appropriate cure 

sequence has been established by means of differential scanning calorimetry (DSC). Young's 

(E) and storage (E') moduli, as well as tensile strengths and glass transition temperatures 

(Tg's) have been determined as the resin composition is varied. We have also looked into the 

effect of the particle size and the filler/resin ratio on the properties of the final materials. 

Their thermal stability has been assessed by thermogravimetric analysis (TGA), the wt % 

incorporation of CSO in the resin has been determined by Soxhlet extraction with CH2Cl2, 

and the extracts have been identified by 1H NMR spectroscopy. A scanning electron 

microscopy (SEM) study has shown visual proof of the filler-resin arrangements in the final 

composites. 

Experimental 

Materials. n-Butyl methacrylate (BMA) and dicyclopentadiene (DCPD) were purchased 

from Alfa Aesar (Ward Hill, MA). Divinylbenzene (DVB) and t-butyl peroxide (TBPO) were 

purchased from Aldrich Chemical Co. (Milwaukee, WI). All chemicals were used as 

received. The soybean oil (Carlini brand – Aldi Inc., Batavia, IL) was purchased in a local 

grocery store and conjugation was carried out using a homogeneous Rh catalyst, as described 

in the literature,20 to produce CSO. The soy hulls were provided by West Central Co-op 

(Ralston, IA). They were ground and sieved into two different particle sizes, <425 µm 

diameter (>40 mesh) and <177 µm diameter (>80 mesh). The sieved soy hulls were then 

dried overnight at 70 oC in a vacuum oven prior to their use. 

Preparation of the Composites. The crude resin was obtained by mixing the designated 

amounts of each component (CSO, DVB, DCPD and BMA) in a beaker. All resins have been 
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prepared using 50 wt % CSO. For the radical initiator TBPO, five wt % of the total resin was 

added. As an example of the nomenclature adopted in this work, the sample DVB10-DCPD5-

BMA35 represents a resin containing 10 wt % of DVB, 5 wt % of DCPD and 35 wt % of 

BMA (the other 50 wt % of the resin being CSO). The dried soy hulls were impregnated with 

the resin (in the ratios designated in the text) and compression molded at 276 psi (unless 

otherwise specified). The filler content could not be reduced below 50 wt %, because, during 

compression molding, the excess of resin leaks when pressure is applied. If cure occurs at 

atmospheric pressure, then the fillers accumulate on the bottom of the mold and a non-

uniform composite is obtained. For filler compositions above 60 wt % the opposite effect is 

observed. The amount of resin was insufficient to completely wet the soy hulls yielding 

materials that tended to crumble when handled. All composites were cured for 5 hours at 130 

oC and then post-cured at 150 oC for another 2 hours. 

Characterization. The optimal cure sequence was determined by DSC using a Q20 DSC 

(TA Instruments, New Castle, DE) under a N2 atmosphere over a temperature range of -20 oC 

to 400 oC at a rate of 20 oC/min. The samples weighed approximately 11 mg. 

 The tensile test experiments were conducted at 25 oC according to ASTM D638 using 

an Instron universal testing machine (model 5569) equipped with a video extensometer and 

operating at a crosshead speed of 2.0 mm/min. The dogbone-shaped test specimens had the 

following gauge dimensions: 57 mm x 12.7 mm x 4.5 mm (length, width and thickness, 

respectively). 

 The dynamic mechanical analysis (DMA) was conducted on a TA Instruments Q800 

DMA using a three-point bending mode. A rectangular specimen of about 22 mm × 8.5 mm × 
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1.5 mm (length × width × thickness) was cut from the samples. Each specimen was cooled to 

-60 oC and then heated at 3 oC/min to 250 oC at a frequency of 1 Hz under air. 

 A Q50 TGA instrument (TA Instruments, New Castle, DE) was used to measure the 

weight loss of the samples under an air atmosphere. The samples were heated from room 

temperature to 650 oC at a heating rate of 20 oC/min. The samples weighed approximately 10 

mg. 

 Soxhlet extraction was conducted to determine the amount of soluble materials in the 

composites. A 2 g sample was extracted for 24 hours with 110 mL of dichloromethane 

(CH2Cl2). After extraction, the resulting solution was concentrated on a rotary evaporator and 

both the soluble and insoluble materials were dried in a vacuum oven at 70 oC overnight 

before weighing. The soluble fraction of each extracted sample was dissolved in CDCl3 and 

proton nuclear magnetic resonance (1H NMR) spectroscopic analysis was carried out in order 

to determine its composition. The 1H NMR spectra were obtained with a Varian Unity 

spectrometer (Varian Associates, Palo Alto, CA) operating at 300 MHz. 

 Scanning Electron Microscopy (SEM) analysis was conducted using a Hitachi S-

2460N variable pressure scanning electron microscope. The parameters used were: 20 kVolts 

accelerating voltage, 60 Pa Helium atmosphere and 15 mm working distance. The equipment 

was set with a tetra backscattered electron detector. Each sample analyzed was frozen with 

liquid N2 prior to fracture for the cryo-fractured analysis. For comparative reasons, the 

samples were also cut using a razor blade and analyzed by SEM. 

Results and Discussion 

Cure Sequence Determination. A preliminary determination of the best cure sequence was 



www.manaraa.com

  16 

 

conducted by means of DSC experiments with a partially cured composite sample (Figure 

1A) and with soy hulls alone (Figure 1B). In Figure 1A, the DSC curve of the sample 

DVB15-BMA35 with 50 wt % soy hulls and a particle size <425 µm diameter heated at 130 

oC for 4 hours shows two exothermic peaks at approximately 135 oC and 170 oC, as well as a 

pronounced absorption of heat at 220 oC and two exothermic peaks at 260 oC and 350 oC. 

Any transitions occuring after 400 oC are related to decomposition of the resin as explained 

in our previous work.25 The heat flow observed between 200 oC and 400 oC corresponds to 

decomposition of the hemicellulose and cellulose present in significant amounts in the soy 

hulls.28 This same feature can be seen in Figure 1B. The exothermic peaks at 135 oC and 170 

oC in Figure 1A are probably related to further cure of the resin. 

 A comparison of Figures 1A and 1B confirms that the heat flow observed in the range 

200-400 oC in Figure 1A is related to changes in the soy hulls. The lower degradation 

temperature for the soy hulls alone (the heat absorption starts at 160 oC) when compared to 

the composite analysis (Figure 1A, the heat absorption starts at 198 oC) suggests that the 

resin helps thermally stabilize the filler, increasing considerably the degradation 

temperatures. 

 To fully cure the soybean oil-based resin during the composite processing, a longer 

cure sequence at higher temperatures was clearly required (see Figure 1A). For that reason, 

the cure time was increased to 5 hours at 130 oC and 276 psi. To ensure complete cure of the 

resin, a post cure of 2 hours at 150 oC and atmospheric pressure was tried. Figure 1C shows 

the DSC of a sample subjected to that cure sequence. In Figure 1C, the peaks at 135 oC and 

170 oC have completely disappeared, indicating that the resin was completely cured after the 
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Figure 1. DSC curves of (A) DVB15-BMA35 composite heated at 130 oC for 4 hours, (B) 
soy hulls, and (C) DVB15-BMA35 composite heated at 130 oC for 5 hours at 276 psi and 

postcured at 150 oC for 2 hours. 
 

longer heating sequence. Also, it is noticeable that the endothermic peak in Figure 1C is 

much less pronounced than in Figures 1A and 1B. This peak is attributed to volatilization of 

compounds during thermal degradation of the hemicellulose.28 This volatilization 

processoccurs more easily in the absence of resin or in the presence of partially cured resin. 

The completely cured polymer network entraps soy hull particles, inhibiting volatilization. 

This particle entrapment is not as effective in the presence of the partially cured resin as the 

network isn’t fully formed and contains regions of lower molecular weight chains and lower 

crosslink density in the composite. Another reason for the lower endothermic peak in Figure 
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1C may be partial degradation of the hemicellulose during the longer cure process. A 

comparison of the DTA curves for the soy hulls (Figure 2) and the DVB15-BMA35 

composite (Figure 3) also shows that degradation of hemicellulose starts at lower 

temperatures in the absence of the resin. As a fully cured resin was desired for the 

preparation of composites in this work, all the samples prepared here were subjected to the 

same heat treatment: 5 hours at 130 oC and 276 psi, followed by a post cure of 2 hours at 150 

oC and atmospheric pressure (the pressure was different than 276 psi where indicated). 

 

 
Figure 2. DTA curve of soy hulls. 

 

Dynamic Mechanical Analysis (DMA). From Table I, the effects of filler/resin ratio, 

particle size and resin composition on the flexural properties of the composites can be 
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Figure 3. DTA curve of DVB15-BMA35 (filler/resin ratio = 50:50 and particle size <425 

µm). 

 

obtained through analysis of the storage modulus (E') at 25 oC. Table I also shows the glass 

transition temperatures (Tg's) of each sample as obtained from the tan delta curve by DMA. 

 The most distinctive characteristic of the composites prepared is the formation of a 

phase separated matrix upon cure of the resin. The presence of two distinct Tg's in all samples 

is evidence that compounds with different reactivity (such as CSO and DVB, for example) 

have polymerized at different rates, producing a phase separation. For all samples, the first Tg 

(Tg1) occurred below -6 oC, while the second Tg (Tg2) occurred above 57 oC. The large 

difference between Tg1 and Tg2 indicates formation of two phases with very different 

properties and compositions. The phase associated with Tg1 is believed to be a CSO-rich 

phase, composed mainly of less reactive species derived from CSO and DCPD. The phase 
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Table I. Glass transition temperatures (Tg's) and storage modulus (E') at 25 oC of the 
composites prepared. 

Entry Samplea 
Filler/Resin 

Ratio 
(wt %) 

Particle 
Size 
(µm) 

Tg1 
(oC) 

Tg2 
(oC) 

Tg2 - Tg1 
(oC) 

E’ at 25 
oC 

(MPa) 
1 Resinb - - -31 57 88 152 
2 92 psi 50/50 <425 -24 60 84 298 
3 184 psi 50/50 <425 -26 74 100 315 
4 DVB15-BMA35 50/50 <425 -32 75 107 536 
5 368 psi 50/50 <425 -31 76 107 356 
6 DVB10-DCPD5-

BMA35 
50/50 <425 -12 68 80 492 

7 DVB5-DCPD10-
BMA35 

50/50 <425 -8 73 81 340 

8 DVB15-DCPD10-
BMA25 

50/50 <425 -14 74 88 686 

9 DVB10-DCPD10-
BMA30 

50/50 <425 -18 69 87 291 

10 DVB15-BMA35 60/40 <425 -32 76 108 416 
11 DVB10-DCPD5-

BMA35 
60/40 <425 -17 75 92 318 

12 DVB5-DCPD10-
BMA35 

60/40 <425 -7 65 72 234 

13 DVB15-DCPD10-
BMA25 

60/40 <425 -13 84 97 384 

14 DVB15-BMA35 60/40 <177 -36 74 110 456 
15 DVB10-DCPD5-

BMA35 
60/40 <177 -12 72 84 326 

16 DVB5-DCPD10-
BMA35 

60/40 <177 -13 73 86 262 

17 DVB15-DCPD10-
BMA25 

60/40 <177 -29 79 108 411 

18 DVB10-DCPD10-
BMA30 

60/40 <177 -32 65 97 333 

aThe cure was conducted at 276 psi unless otherwise noted. 
bDVB15-BMA35 without filler. 
 

associated with Tg2 is probably a DVB-rich phase. 

 The reinforcing effect obtained when soy hulls are added to the resin can be clearly 
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seen by comparing the values of Tg2 for entry 1 and any other entry in Table I. For all 

reinforced samples (entries 2-18), Tg2 occurs at a higher temperature than that of the 

unreinforced resin (entry 1, 57.3 oC). The increase in Tg2 ranges from 5% for entry 2 (60.2 

oC) to 46% for entry 13 (83.5 oC). The effect is even more significant for the storage 

modulus, showing a minimum increase of 1.5 times in E' for entry 12 (234 MPa compared 

with 152 MPa for entry 1). The only property that doesn't seem to be significantly affected by 

the presence of reinforcement is Tg1. Indeed, Tg1 is more sensitive to variations in the resin 

composition as will be explained later. 

 By increasing the pressure applied during cure from 92 psi to 368 psi (Table I, entries 

2-5), a trend can be observed for E'. The storage modulus increases significantly from 298 

MPa (entry 2) to 536 MPa (entry 4). When the applied pressure was 368 psi (entry 5), the 

storage modulus decreased to 356 MPa. The pressure during cure had a definite effect on the 

observed phase separation of the matrix as evidenced by the values of Tg2 – Tg1 (Table I). As 

the pressure was increased from 92 psi to 276 psi, the difference in Tg’s went from 84 oC to 

107 oC (entries 2-4, Table I), indicating an increase in the incompatibility of the two phases. 

Increasing the pressure to 368 psi showed no further effect on phase separation (entries 4 and 

5, Table I). The relationship between cure pressure and phase separation is not fully 

understood at the present time and further tests are necessary to better explain these 

observations. One could argue that higher pressures force the resin to physically interact with 

the filler structure during cure (hence the increase in both Tg’s, entries 2-4, Table I) and that 

this might favor stabilization of the CSO-rich phase through mixing with residual soybean oil 

from the soy hulls (see Table IV, entry 1), yielding an even lower polymerization rate for 

CSO and a greater phase separation. The influence of the residual oil from the filler on the Tg 
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of the resin has been noted previously, where samples prepared with extracted filler showed 

higher Tg’s than samples prepared with fillers containing residual oil.25 In the current work, 

the presence of fillers clearly contributes to phase separation of the resin, as noticed from the 

Tg2 – Tg1 values for entries 1, 4, 10, and 14 in Table I (88 oC, 107 oC, 108 oC, and 110 oC, 

respectively). 

As seen from a comparison of entries 4, 6-8 and 10-13 in Table I, E' decreases 

considerably (at least 31% from entry 7 to entry 12) when a higher load of filler is used. 

Indeed, the higher filler content affects the dispersion and polymerization of the resin, 

yielding materials with increased flaws and/or weak points. The effect of filler/resin ratio on 

the Tg's isn't clear, as most of the variations are negligible, except for the Tg2 of entries 8 and 

13 where there is a variation of 10 oC. 

 The particle size of soy hulls has less of an effect in E’ than the filler/resin ratio, with 

a maximum improvement of approximately 10% when smaller particles are used (compare 

entries 10 and 14 in Table I). Comparison of entries 10-13 and 14-17 in Table I reveals an 

overall improvement in storage modulus whenever smaller particles are used as the filler. At 

the same wt %, soy hulls having a smaller particle size present a higher density, accounting 

for a lower volume of material and a higher surface area when compared to larger particle 

sizes. The smaller particles allow better dispersion of the filler in the resin, enhancing the 

filler-resin interaction and consequently improving the composites’ mechanical properties. 

Although some variations in Tg's can be observed when comparing entries 10-13 and 14-17 

in Table I, they don't follow any particular trend that can be related to the properties of the 

final composites. 
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 As expected from its structure and reactivity, DVB is the major structural comonomer 

in the resin; so E' is expected to drop whenever DVB is substituted by DCPD. As a matter of 

fact, this can be observed throughout Table I, and the most evident change is seen when 

comparing entries 14 and 16, where substitution of 10 wt % DVB by 10 wt % DCPD 

represents a loss of nearly 43% in E'. As far as the Tg's are concerned, a net increase in Tg1 is 

observed when larger amounts of DCPD are present in the resin, whereas Tg2 isn't affected 

by the resin composition to the same extent (entries 10-12, for example). This suggests that 

DCPD is incorporated preferentially into the CSO-rich phase, increasing its crosslink density 

and augmenting Tg1. Another overall trend can be observed when comparing the values of 

Tg2 – Tg1 for various resin compositions. As DVB is replaced by DCPD, a significantly 

lower difference in the two Tg’s is obtained. 

Tensile Tests. The tensile test results for all composites prepared in this work are shown in 

Table II. From the results obtained, it can be seen that the tensile strength of the composites 

is lower for higher filler/resin ratios (Table II; entries 3, 5-7 and 9-12). A similar trend is 

observed for the Young's modulus, when these first two sets of results are compared, with the 

exception of entry 5. Although the variations in Young's modulus are proportionally less 

significant than those for the tensile strength, it's expected that high loads of filler affect the 

dispersion and polymerization of the resin, as mentioned earlier during the discussion of the 

DMA results. These observations are in agreement with previously published data.25 

 The effect of particle size was assessed by comparing the results summarized in 

entries 9-12 and 13-16 in Table II (samples having soy hull diameters <425 µm and <177 

µm, respectively). The results show an improvement in tensile strength whenever smaller 

particles are used as the filler, except for the results reported in entry 16 of Table II. The 
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Table II. Young’s modulus and tensile strength of the composites prepared. 

Entry Samplea Filler/Resin 
Ratio (wt %) 

Particle 
Size (µm) 

Young’s 
Modulus 

(MPa) 

Tensile 
Strength 
(MPa) 

1 92 psi 50/50 <425 542 ± 27 2.4 ± 0.1 
2 184 psi 50/50 <425 414 ± 18 1.4 ± 0.3 
3 DVB15-BMA35 50/50 <425 672 ± 31 2.6 ± 0.2 
4 368 psi 50/50 <425 551 ± 60 2.4 ± 0.1 
5 DVB10-DCPD5-

BMA35 
50/50 <425 480 ± 58 1.8 ± 0.1 

6 DVB5-DCPD10-
BMA35 

50/50 <425 473 ± 62 1.5 ± 0.2 

7 DVB15-DCPD10-
BMA25 

50/50 <425 645 ± 74 2.3 ± 0.2 

8 DVB10-DCPD10-
BMA30 

50/50 <425 441 ± 51 1.4 ± 0.2 

9 DVB15-BMA35 60/40 <425 663 ± 59 2.0 ± 0.3 
10 DVB10-DCPD5-

BMA35 
60/40 <425 636 ± 73 1.5 ± 0.2 

11 DVB5-DCPD10-
BMA35 

60/40 <425 406 ± 46 0.7 ± 0.1 

12 DVB15-DCPD10-
BMA25 

60/40 <425 569 ± 81 2.2 ± 0.1 

13 DVB15-BMA35 60/40 <177 804 ± 63 2.5 ± 0.2 
14 DVB10-DCPD5-

BMA35 
60/40 <177 468 ± 47 1.7 ± 0.3 

15 DVB5-DCPD10-
BMA35 

60/40 <177 351 ± 50 0.9 ± 0.2 

16 DVB15-DCPD10-
BMA25 

60/40 <177 641 ± 18 1.8 ± 0.3 

17 DVB10-DCPD10-
BMA30 

60/40 <177 490 ± 79 1.3 ± 0.3 

aThe cure was conducted at 276 psi unless otherwise noted. 

 

overall trend observed here is in agreement with the observations made when discussing the 

DMA results. Similar effects were observed with spent germ biocomposites prepared from a 

tung oil resin.25 For the Young's modulus, no regular trend was observed when comparing 
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samples with different filler particle sizes. 

 Variations in the resin composition can affect significantly both the Young's modulus 

and the tensile strength of the composites, as can be seen when comparing entries 13 and 15 

in Table II. For example, a difference of more than 50% in both properties is observed when 

10 wt % DVB in the resin is substituted by 10 wt % DCPD. Indeed, due to differences in 

reactivity and stability of the monomers, gradual substitution of 5 wt % of DVB by 5 wt % 

DCPD yields materials with lower tensile strength and Young's modulus (compare entries 3, 

5, 6, 9-11 and 13-15 in Table II). 

 Substitution of BMA by DCPD has a lesser effect on the composites’ properties than 

replacement of DVB by DCPD, as shown above. When 10 wt % of the comonomer BMA 

was replaced by 10 wt % DCPD (Table II, entries 7, 12, and 16 compared to entries 3, 9 and 

13), a drop in both the Young's modulus and the tensile strength was observed. The change is 

within the experimental error for the tensile strengths observed in entries 9 and 12 (2.0 MPa 

and 2.2 MPa, respectively), but represents a decrease of up to 28% between entries 13 and 16 

(2.5 MPa and 1.8 MPa, respectively). The decrease in Young’s modulus follows the same 

trend with up to a 20% decrease seen when comparing entries 13 and 16 (804 MPa and 642 

MPa, respectively). Those results are closely related to the structure and reactivity of DCPD. 

The presence of two double bonds in this latter compound accounts for its role as a 

crosslinker in the same manner as DVB. For that reason, samples containing 25 wt % of 

DVB + DCPD show a high crosslink density that compensates for the low reactivity of 

DCPD towards free radical processes. When the amount of crosslinkers drops to 20 wt % by 

substituting 5 wt % of DVB by 5 wt % of BMA (entries 8 and 17 in Table II), a significant 
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loss in tensile properties is observed. The Young's modulus decreases to 441 MPa (entry 8) 

and 490 MPa (entry 17) while the tensile strength drops to 1.4 and 1.3 respectively (entries 8 

and 17) because of a lower crosslink density. Therefore, it can be concluded that DVB is the 

component that is primarily responsible for the tensile properties in the composites we have 

prepared. 

 Further investigation of the influence of the processing pressure on the final 

composites’ properties is needed in order to explain the results observed. So far, no regular 

trend is evident for either the Young's modulus or the tensile strength when the pressure is 

increased from 92 psi to 368 psi (entries 1-4, Table II). The best results were obtained for the 

sample cured at 276 psi. The Young's modulus for that sample is 672 MPa and the tensile 

strength is 2.6 MPa (Table II, entry 3). 

Thermogravimetric Analysis (TGA). The thermal stability of the composites has been 

studied by TGA and the results obtained are presented in Table III. From the thermal 

degradation pattern of the composites, 3 temperatures are of particular interest: (1) the 

temperature at which 10 wt % of the sample has degraded (T10), (2) the temperature at which 

50 wt % of the sample has degraded (T50), and (3) the temperature at wich 95 wt % of the 

sample has degraded (T95). 

 From entry 1 of Table III, it can be seen that initial degradation of the soy hulls starts 

near 200 oC (T10 = 204 oC) and the fibers are 95% degraded at 545 oC (T95 = 545 oC). For the 

unreinforced resin (Table III, entry 2), degradation starts near 344 oC (T10 = 344 oC) and is 

mostly finished at 586 oC (T95 = 586 oC). By reinforcing the resin with soy hulls, the thermal 

stability of the filler is significantly increased as the T10 values for all samples (entries 2-19) 
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Table III. Degradation temperatures for the composites.  

Entry Samplea 
Filler/Resin 

Ratio (wt 
%) 

Particle Size 
(µm) T10 (oC) T50 (oC) T95 (oC) 

1 Soy Hulls - <425 204 325 545 
2 Resinb - - 344 436 585 
3 92 psi 50/50 <425 278 384 624 
4 184 psi 50/50 <425 274 375 594 
5 DVB15-BMA35 50/50 <425 275 383 610 
6 368 psi 50/50 <425 279 384 572 
7 DVB10-DCPD5-

BMA35 
50/50 <425 265 357 624 

8 DVB5-DCPD10-
BMA35 

50/50 <425 264 352 535 

9 DVB15-DCPD10-
BMA25 

50/50 <425 271 383 642 

10 DVB10-DCPD10-
BMA30 

50/50 <425 266 367 578 

11 DVB15-BMA35 60/40 <425 276 381 567 
12 DVB10-DCPD5-

BMA35 
60/40 <425 267 360 609 

13 DVB5-DCPD10-
BMA35 

60/40 <425 269 365 623 

14 DVB15-DCPD10-
BMA25 

60/40 <425 268 364 609 

15 DVB15-BMA35 60/40 <177 266 378 551 
16 DVB10-DCPD5-

BMA35 
60/40 <177 267 373 540 

17 DVB5-DCPD10-
BMA35 

60/40 <177 255 355 588 

18 DVB15-DCPD10-
BMA25 

60/40 <177 261 366 601 

19 DVB10-DCPD10-
BMA30 

60/40 <177 266 379 590 

aThe cure was conducted at 276 psi unless otherwise noted. 
bDVB15-BMA35 without filler. 
 

are higher than 255 oC, representing an increase of at least 25%. This can be confirmed by 

analysis of the DTA curves of the soy hulls (Figure 2) and the DVB15-BMA35 composite 
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(Figure 3). As seen in Figure 2, after the initial loss of water, the soy hulls start to degrade 

above 190 oC, whereas the composite degradation only starts above 260 oC. T50 is also 

improved in the presence of the resin, although a maximum increase of only 18% is seen 

(entries 5, 6 and 9). T95 seems to be affected in an irregular manner by the resin, so no 

conclusions can be drawn here. 

 Other parameters, such as pressure during cure, filler/resin ratio, particle size and 

resin composition, seem to have no clear cut effect on the T10, T50 and T95 values. Indeed, T10 

varies from 256 oC (entry 17) to 279 oC (entry 6), while T50 ranges from 352 oC (entry 8) to 

384 oC (entry 3), and T95 goes from 535 oC (entry 8) to 642 oC (entry 9) without any regular 

pattern being evident. 

Soxhlet Extraction. The Soxhlet extraction results are presented in Table IV. Figure 4 shows 

the 1H NMR spectra of soybean oil (SOY), conjugated soybean oil (CSO) and the extracts of 

soy hulls (SH), the pure resin and one of the composites prepared (DVB15-BMA35). 

 From the results in Table IV, it can be observed that the majority of the starting 

materials (82-92 wt %) get incorporated into the final composites, forming a material that is 

relatively insoluble in CH2Cl2. Soy hulls alone (Table IV, entry 1) yield 10 wt % of soluble 

materials, identified as being mainly soybean oil by 1H NMR spectroscopic analysis (Figure 

4C). The unreinforced resin (entry 2) shows a total of 13 wt % of soluble materials after 

Soxhlet extraction. Characterization of the extract by 1H NMR spectroscopic analysis 

indicates CSO to be the major component and traces of BMA can be detected (peak at 4.05 

ppm) (Figure 4D). 

 The difference in pressure during the cure seems to have no effect on the % soluble 
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Table IV. Extraction results. 

Entry Samplea 
Filler/Resin 

Ratio (wt 
%) 

Particle Size 
(µm) % Soluble % 

Insoluble 

1 Soy Hulls - <425 10 90 
2 Resinb - - 13 87 
3 92 psi 50/50 <425 14 86 
4 184 psi 50/50 <425 14 86 
5 DVB15-BMA35 50/50 <425 14 86 
6 368 psi 50/50 <425 12 88 
7 DVB10-DCPD5-

BMA35 
50/50 <425 8 92 

8 DVB5-DCPD10-
BMA35 

50/50 <425 10 90 

9 DVB15-DCPD10-
BMA25 

50/50 <425 9 91 

10 DVB10-DCPD10-
BMA30 

50/50 <425 11 89 

11 DVB15-BMA35 60/40 <425 12 88 
12 DVB10-DCPD5-

BMA35 
60/40 <425 9 91 

13 DVB5-DCPD10-
BMA35 

60/40 <425 14 86 

14 DVB15-DCPD10-
BMA25 

60/40 <425 9 91 

15 DVB15-BMA35 60/40 <177 14 86 
16 DVB10-DCPD5-

BMA35 
60/40 <177 15 85 

17 DVB5-DCPD10-
BMA35 

60/40 <177 18 82 

18 DVB15-DCPD10-
BMA25 

60/40 <177 15 85 

19 DVB10-DCPD10-
BMA30 

60/40 <177 16 84 

aThe cure was conducted at 276 psi unless otherwise noted. 
bDVB15-BMA35 without filler. 
 

materials obtained from the composites (Table IV, entries 3-6). In fact, the 2 wt % difference 

observed between entries 6 and 3-5 is negligible. Also, the filler/resin ratio shows no 
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Figure 4. 1H NMR spectra of (A) soybean oil, (B) CSO, (C) soy hulls' extract, (D) 

unreinforced resin extract (composition: 50 wt % CSO, 35 wt % BMA and 15 wt % DVB), 
and (E) composite extract (composition: resin = DVB15-BMA35, filler/resin ratio = 50/50 
and particle size <425 µm). Spectrum E is representative of extracts from all composites. 

 

significant effect on the % soluble materials from the composites. Considering that the resin 

and the soy hulls are each responsible for 10-13 wt % of soluble materials, a higher 

filler/resin ratio wasn't expected to change the final amount of soluble materials in the 

composites. Indeed, a comparison of the % soluble materials for similar resins with different 

filler/resin ratios (Table IV; entries 5, 7-9 and 11-14) shows a maximum difference of 4 wt % 

between entries 8 and 13 in Table IV. 

 Unlike the filler/resin ratio, the particle size does seem to affect the % of soluble 
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materials in the final composites. A comparison of entries 11-14 and 15-18 in Table IV shows 

an average increase of 5 wt % in the amount of soluble materials when particles smaller than 

177 µm diameter are used, instead of particles smaller than 425 µm diameter. With a higher 

surface area, smaller particles are expected to have a greater interaction with the resin. As 

proposed earlier when discussing the DMA results, the greater interaction between filler and 

resin may lead to mixture of the unreactive residual oil from the soy hulls with the CSO-

based resin, which would decrease the overall reactivity of the matrix, yielding more soluble 

content. The reasons behind this observations aren’t fully clear at this time and further studies 

are necessary in order to determine the origin of the observed behavior. 

 Finally, no particular pattern has been observed for the effect of resin composition on 

the amount of soluble material in the composites. It is assumed that all components are 

similarly incorporated into the matrix, with the exception of CSO. From a comparison of the 

1H NMR spectra (Figures 4B and 4E), the extract of the composites is believed to be 

primarily conjugated soybean oil (CSO), confirming our prediction that CSO is not likely to 

be fully incorporated due to its lower reactivity. 

Scanning Electron Microscopy (SEM). Figure 5 shows the SEM images of cryo-fractured 

(A-D) and cut (E-H) surfaces of composite samples. Taking as the reference the sample 

shown in Figures 5A and 5E, the images illustrate the effect of having the same resin 

composition and different cure pressures (Figures 5B and 5F), filler/resin ratios (Figures 5C 

and 5G), and filler particle sizes (Figures 5D and 5H). By analyzing the images, it is possible 

to better understand how some parameters change the filler-resin interaction and to correlate 

these effects with some of the properties obtained for the composites. 
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Figure 5. SEM images of (A) cryo-fractured DVB15-BMA35, 50:50 filler/resin ratio, 
particle size <425 µm, cured under 92 psi; (B) cryo-fractured DVB15-BMA35, 50:50 

filler/resin ratio, particle size <425 µm, cured under 276 psi; (C) cryo-fractured DVB15-
BMA35, 60:40 filler/resin ratio, particle size <425 µm, cured under 276 psi; (D) cryo-

fractured DVB15-BMA35, 60:40 filler/resin ratio, particle size <177 µm, cured under 276 
psi; (E) cut DVB15-BMA35, 50:50 filler/resin ratio, particle size <425 µm, cured under 92 
psi; (F) cut DVB15-BMA35, 50:50 filler/resin ratio, particle size <425 µm, cured under 276 
psi; (G) cut DVB15-BMA35, 60:40 filler/resin ratio, particle size <425 µm, cured under 276 
psi; and (H) cut DVB15-BMA35, 60:40 filler/resin ratio, particle size <177 µm, cured under 

276 psi. 

The cryo-fractured images (Figures 5A-D) provide imortant information about the 

filler-resin interaction. From the absence of holes caused by fiber pull-out or other similar 



www.manaraa.com

  33 

 

events during fracture, it appears that there is a good interaction between the soy hulls and 

the matrix. The voids observed in the images are mainly the result of shrinkage during cure 

(Figure 5A-C). In Figure 5D, the smaller soy hulls and their relatively good dispersion 

throughout the matrix make it difficult to distinguish between shrinkage cracks and structural 

voids in the sample. 

 In an attempt to evaluate the filler dispersion in the matrix, the composites were cut 

and the cross sections observed by SEM (Figures 5E-H). The effect of pressure during cure 

can be assessed by the comparison of Figures 5E and 5F. It can be seen that considerably 

fewer shrinkage cracks appear in the sample cured at 276 psi (Figure 5F) than in the sample 

cured at 92 psi (Figure 5E), yielding a more compact structure with less voids and more 

particles completely surrounded by the polymer matrix. This could explain the improvement 

in dynamic flexural properties for the sample cured at a higher pressure (Table I, entries 2 

and 4). Improvements in tensile properties were also observed for these samples (Table II, 

entries 1 and 3), although a consistent explanation fails for the samples cured at 184 psi and 

368 psi (Table I, entry 5, and Table II, entries 2 and 4). 

 A comparison of Figures 5F and 5G gives information about filler/resin ratio effects 

on the structure of the composites. The sample having a higher filler/resin ratio (Figure 5G) 

exhibits considerably bigger flaws and voids than the sample with a 50:50 filler/resin ratio 

(Figure 5F). This is presumably caused by an absence of resin between the filler particles in 

some regions of the composite. This can explain the drop in storage modulus observed in 

Table I, entries 4, 6-8, and 10-13. For the tensile test, an overall decrease in E and in the 

tensile strength was observed (Table II, entries 3, 5-7, and 9-12), but again a consistent 



www.manaraa.com

  34 

 

explanation fails when comparing the Young’s modulus of entries 5 and 10 in Table II. 

 The most significant differences are observed when comparing particle size effects in 

the structure of the composites (Figures 5G and 5H). From the SEM images, it is clear that 

composites prepared with smaller particle sizes exhibit better dispersion of the soy hulls in 

the matrix. It is easily seen that the voids present in Figure 5H are much smaller than those in 

Figure 5G, which may explain the better properties obtained for the former composite (Table 

I, entries 10 and 14, and Table II, entries 9 and 13). The higher contact surface between the 

soy hulls and the resin may account for the earlier mentioned effect on the percent soluble 

materials (Table IV, entries 11 and 15). 

Conclusions 

 In this work, biocomposites have been prepared by the free radical polymerization of 

a conjugated soybean oil-based resin reinforced with soy hulls. An ideal cure sequence of 5 

hours at 130 oC, followed by a postcure at 150 oC for 2 hours, has been established by a DSC 

study of the cure process. The effects of filler/resin ratio, particle size and pressure during 

cure have been evaluated. It has been observed that the properties of the composites tend to 

decrease when higher filler/resin ratios or larger particle sizes are used. This behavior is 

closely related to impregnation of the filler by the resin; whenever good dispersion of the 

filler in the matrix is compromised, the mechanical properties of the composites are 

negatively affected. As the pressure applied during cure is increased up to 276 psi, an overall 

increase in the mechanical properties is detected by tensile test and DMA. The properties 

decrease when a higher pressure (368 psi) is applied.  

The matrix is identified as being phase separated, which is probably related to the 
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difference in reactivity of CSO and the other monomers employed in the resin. Although 

good thermal stabilities and promising properties are obtained for the composites presented 

here, better results might be achieved by using more reactive oils, such as conjugated linseed 

oil. 

 In terms of resin composition, a significant dependence of the properties on the DVB 

content is observed. Replacement of DVB by DCPD affects considerably the properties due 

to differences in the reactivity of these two compounds. A loss in reactivity of the resin upon 

substitution of BMA by DCPD is compensated for by a higher crosslink density, but the final 

properties of the composites are still lower than those of the reference resin (DVB15-

BMA35). 
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Abstract 

Biocomposites consisting of a conjugated linseed oil-based thermoset reinforced with 

rice hulls have been prepared by free radical polymerization initiated by t-butyl peroxide. 

The resin composition was kept constant at 50 wt % conjugated linseed oil, 35 wt % n-butyl 

methacrylate, and 15 wt % divinylbenzene. Tensile tests, DMA, TGA, Soxhlet extraction, 

and DSC have been employed to establish the ideal cure sequence. The pressure during cure, 

filler load, and drying and grinding of the filler have been varied and their effect on the final 

properties of the composites have been assessed. Optimal conditions have been established 

for the preparation of rice hull biocomposites. SEM showed a weak filler-resin interaction 

and X-ray mapping suggested the presence of silica in the rice hulls, which may account for 

the high thermal and mechanical properties obtained for these composites. 

Introduction 

 The rapid increase in petroleum prices over recent years has encouraged the 

development of alternative sources of energy and materials. In that context, biorenewable-

based products, such as biofuels, bioplastics, and biocoatings are especially appealing, since 
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they are readily prepared from naturally occurring starting materials that are constantly being 

generated by nature. Although the complete substitution of petroleum-derived products in our 

current society is highly unlikely, great progress has been made recently towards the 

development of products with the potential to compete with petroleum goods in times of high 

oil prices. 

 With that in mind, our group has been investigating the synthesis and properties of 

new biomaterials derived mainly from agricultural oils. Materials, such as soybean oil-based 

polyurethane coatings,1, 2 soybean,3, 4 and linseed oil-based bio-rubbers,5 and various 

bioplastics containing at least 40 wt % of vegetable or modified vegetable oils, such as 

soybean,6 corn,7 tung,8 and linseed oils,9 have been prepared and analyzed. These latter 

materials range from soft rubbers to hard plastics, depending on the resin composition and 

the co-monomers added to the matrix.10 

 The use of natural fibers to reinforce polymeric materials has been explored by 

several groups in the last decade. There are reports of the reinforcement of polypropylene 

(PP) with sisal fiber,11 rice hulls and kenaf fiber,12 palm and coir fibers,13 wheat straw,14 

sunflower hulls,15 and abaca strands.16 High density polyethylene (HDPE) has also been 

reinforced with banana fiber,17 sugar cane bagasse and wood flour.18 Polyester and epoxy 

resins have been reinforced with jute fiber,19 and there are reports of the use of hemp fiber,20 

and poultry feathers as reinforcements for composites,21 among several other combinations of 

resins and natural fibers that are not cited here. 

  Recently, our group reported the preparation and analysis of a soybean oil-based  

thermoset resin reinforced with corn stover.22 The same resin has been previously reinforced 
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by us with soybean hulls,23 and a tung oil variation of the resin was reinforced with spent 

germ.24, 25 Unlike previous work, where rice hulls were used to reinforce thermoplastics,12 we 

report herein the preparation of a linseed oil-based free-radical thermoset resin reinforced 

with rice hulls. The resin is a copolymer of conjugated linseed oil (CLO), divinylbenzene 

(DVB) and n-butyl methacrylate (BMA). The composites were compression molded and the 

influence of pressure during cure, cure temperatures, cure time, filler load, filler particle size, 

and drying of the filler on the final properties of the composites has been assessed and 

optimum preparation conditions are proposed. The techniques used for the analysis of the 

biocomposites are tensile tests, dynamic mechanical analysis (DMA), differential scanning 

calorimetry (DSC), thermogravimetric analysis (TGA), Soxhlet extraction, proton nuclear 

magnetic resonance spectroscopy (1H NMR), scanning electron microscopy (SEM), and X-

ray mapping. 

Experimental 

Materials. BMA was purchased from Alfa Aesar (Ward Hill, MA). DVB and t-butyl 

peroxide (TBPO) were purchased from Sigma-Aldrich (Milwaukee, WI). All were used as 

received. Superb linseed oil was provided by ADM (Red Wing, MN) and conjugated using a 

rhodium catalyst, following a method developed and frequently used by our group.26 The rice 

hulls were provided by the Missouri Crop Improvement Association (Columbia, MO). They 

were ground to <1 mm diameter particle size and dried overnight at 70 ˚C in a vacuum oven 

before use. Three samples have been made using as-received (non-ground and/or non-dried) 

rice hulls for comparison of the properties with the composites reinforced with the ground 

and dried rice hulls. 
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General procedure for preparation of the biocomposites. The crude resin was obtained by 

mixing 15.0 g (50 wt %) of the conjugated linseed oil (CLO), 10.5 g (35 wt %) of BMA, and 

4.5 g (15 wt %) of DVB in a beaker. Then 1.5 g of the free-radical initiator TBPO, 

corresponding to an extra 5 wt % with respect to the total resin weight, was added to the 

monomer mixture and stirred. The rice hulls were impregnated with the crude resin and 

compression molded for 5 hours (unless otherwise specified) at different temperatures (cure 

sequences I-VII, Table I). The composites were then removed from the mold and post-cured 

in a convection oven for 2 hours at different temperatures (cure sequences I-V, Table I). As 

observed with soybean hull biocomposites,23 the filler content could not be reduced below 50 

wt % because, during compression molding, the excess of resin leaks out from the mold 

when pressure is applied. If the cure is carried out at atmospheric pressure, the filler 

accumulates in the bottom of the mold and a non-uniform composite is obtained. The cure 

temperatures, the pressure during the cure, and the filler load have been varied as indicated in 

the text. Finally, four composites were prepared with fillers under different conditions to 

evaluate the effect of drying and grinding the rice hulls. 

Characterization of the composites. Tensile tests were conducted at room temperature 

according to ASTM D-638 using an Instron universal testing machine (model 5569) 

equipped with a video extensometer and operating at a crosshead speed of 2.0 mm/min. 

Dogbone-shaped test specimens were machined from the original samples to give the 

following gauge dimensions: 57.0 mm x 12.7 mm x 4.5 mm (length x width x thickness, 

respectively). For each composite, seven dog-bones were cut and tested. The results 

presented in the text are the average of these measurements along with the calculated 
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standard deviation. A Student’s t-test was used to confirm that each pair of results is 

statistically different. 

 DMA experiments were conducted on a Q800 DMA (TA Instruments, New Castle, 

DE) using a three point bending mode with a 15.0 mm clamp. Rectangular specimens of 22.0 

mm x 8.5 mm x 1.5 mm (length x width x thickness, respectively) were cut from the original 

samples. Each specimen was cooled to -60 ˚C and then heated at 3 ˚C/min to 250 ˚C at a 

frequency of 1 Hz and an amplitude of 14 µm under air. Two runs for each sample were 

carried out and the results presented in the text reflect the average of the two measurements. 

 A Q50 TGA instrument (TA Instruments, New Castle, DE) was used to measure the 

weight loss of the samples under an air atmosphere. The samples (~10 mg) were heated from 

room temperature to 650 oC at a rate of 20 oC/min. 

 Soxhlet extraction was conducted to determine the amount of soluble materials in the 

composites. A 2.0 g sample of each composite was extracted for 24 h using refluxing 

dichloromethane (CH2Cl2). After extraction, the solubles were recovered by evaporating the 

CH2Cl2 under vacuum. Both soluble and insoluble materials were dried overnight at 70 ˚C. 

The dried soluble fraction was then dissolved in deuterated chloroform (CDCl3) and the 1H 

NMR spectrum was obtained using a Varian Unity spectrometer (Varian Associates, Palo 

Alto, CA) operating at 300 MHz. The 1H NMR spectra helped determine the identity of the 

solubles in each sample. 

 DSC experiments were performed on a Q20 DSC (TA Instruments, New Castle, DE) 

under a N2 atmosphere over a temperature range of -20 ˚C to 400 ˚C, while heating at a rate 

of 20 ˚C/min. The samples weighed ~10 mg. 
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 For the SEM analysis, each sample was frozen with liquid nitrogen prior to fracture 

(cryofracture). A second section of the sample was mechanically cut and shaved with a razor 

blade to provide a smooth cross section. Both cryofractured and cut samples were examined 

using an Hitachi S-2460N variable-pressure SEM. The microscope was operated at 20 kV 

accelerating voltage, with 60 Pa of helium atmosphere, and a 25 mm working distance. 

Backscattered electron images were collected using a Tetra BSE detector (Oxford 

Instruments) at 35x and 100x magnifications. An Oxford ISIS X-ray analyzer with a light-

element detector was used to collect an X-ray map of a section of the cut surface at 200x 

magnification. 

Results and Discussion 

Cure sequence study. In order to determine the optimum cure sequence, seven samples 

bearing the same resin composition and filler load (70 wt %) were exposed to different 

temperatures, as shown in Table I. The cured composites were then analyzed by a tensile test, 

DMA, TGA, and Soxhlet extraction. The results are presented in Table II. 

 For an assessment of the reproducibility of the composites' properties, cure sequence I 

was applied to composites from different batches, under otherwise identical conditions (cure 

sequence Ia, Table II). The results show an overall agreement between the properties 

measured for the two samples, especially when the differences between the 

propertiesobtained for cure sequences I and Ia are compared to the variations observed for the 

other cure sequences employed (cure sequences II-VII, Table I). 
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Table I. Cure temperatures used in preparation of the biocomposites. 

Cure Sequencea Cure Temperature (˚C) Post-cure Temperature (˚C) 
I 130 150 
II 140 160 
III 155 175 
IV 180 200 
V 230 250 
VI 180 - 
VII 180b - 

a The composites were cured under 400 psi. 
b The sample was cured for 7 hours. 
 

Table II. Tensile test, DMA, TGA and Soxhlet extraction results for composites cured under 
400 psi, and different temperatures and times. 

Cure 
sequence E (GPa) Tensile strength 

(MPa) Tg (˚C) 
E' at 

130˚C 
(MPa) 

T10 
(˚C) 

Residue 
(wt %) 

Soluble 
fraction 
(wt %)d 

I 0.8 ± 0.1 2.4 ± 0.4 26 102 289 15 6 
Ia 0.7 ± 0.1 3.2 ± 0.3 25 98 290 15 6 
II 1.2 ± 0.1 3.7 ± 0.3 30, 73b 137 294 14 6 
III 1.4 ± 0.4 5.4 ± 0.8 43 209 291 14 6 
IV 1.8 ± 0.1 6.7 ± 0.7 68 336 304 14 5 
V 1.7 ± 0.1 5.8 ± 2.7 66 149 352 21 4 
VI 1.0 ± 0.5 0.7 ± 0.5 59 45 297 14 14 
VII 1.1 ± 0.4 0.8 ± 0.3 -c -c 298 14 13 

a Composite made under the same conditions, but from a different batch. 
b Two distinct Tg's were observed (30 ˚C and 73 ˚C). 
c The sample submitted to cure sequence VII tended to crumble very easily when handled; 
therefore, DMA specimens could not be machined for determination of the Tg and storage 
modulus at 130 ˚C. 
d Determined by Soxhlet extraction. 
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 From the tensile test results, there is an overall increase in both the Young's modulus 

and the tensile strength when the cure temperature increases from 130 ˚C to 180 ˚C (cure 

sequences I-IV, Table II). A significant drop in the tensile strength is observed when the 

composite is cured at 230 ˚C (cure sequence V, Table II). In that case, the exceedingly high 

cure temperature employed in cure sequence V initiates thermal degradation of the rice hulls, 

affecting the tensile properties of the final composite. The absence of a post-cure step during 

cure sequences VI and VII has a dramatic effect on the tensile properties of the composites, 

independent of the duration of the cure. The Young's modulus decreases to around 1.0 GPa 

for composites cured at 180 ˚C for 5 and 7 hours (cure sequences VI and VII, Table II). A 

more pronounced decrease is observed in the tensile strength of these composites (compare 

cure sequences VI and VII with cure sequence IV, Table II). This indicates that the post-cure 

is a key step during the preparation of the biocomposites. It helps to maximize the 

mechanical properties through an increase in the crosslink density and full incorporation of 

all of the co-monomers used in the synthesis. 

 The glass transition temperatures (Tg) were determined from the tan delta curves 

obtained by DMA. Similar to the Young's modulus and the tensile strength, an increase in the 

Tg for the composites is seen with increasing cure temperatures. The Tg increases from 26 ˚C 

to 68 ˚C when the cure temperature is increased from 130 ˚C to 180 ˚C (cure sequences I-IV, 

Table II). This increase in Tg may indicate a higher degree of cure obtained when higher 

temperatures are used during processing. At lower temperatures, the polymerization rate is 

low and the product obtained after the process isn't fully cured. As the cure temperature 

increases, a higher polymerization rate yields a higher degree of cure, increasing the final Tg 

as a consequence. The occurrence of a second Tg for cure sequence II is not completely 



www.manaraa.com

  45 

 

understood. In some of our previous work,23 the appearance of two Tg's was observed when a 

resin containing co-monomers with distinctly different reactivities (for example, conjugated 

soybean oil, BMA and DVB) was cured under high pressures and high filler loads, but here 

these parameters are kept constant. By increasing the cure temperature to 230 ˚C (cure 

sequence V, Table II), a slight decrease in the Tg is observed. The absence of a post-cure step 

(cure sequence VI, Table II) results in a composite that is only partially cured. The composite 

cured under cure sequence VII crumbled too easily when handled to be analyzed by DMA. 

 The storage modulus of the biocomposites was determined at 130 ˚C, significantly 

above the Tg, where a better relationship could be established between the parameters 

changed and the storage modulus of the composites analyzed. Overall, the results follow the 

same trend observed for the tensile properties. An increase in storage modulus (E') is seen 

with an increase in the cure temperature. A significant drop in the storage modulus is 

observed when comparing cure sequences IV and V in Table II, and a dramatic decrease in E' 

is detected when no post-cure is applied (cure sequence VI, Table II). These results suggest 

that the post-cure is essential to get a fully cured composite and cure sequence IV seems to 

be optimal for this system. 

 T10 represents the temperature at 10 wt % degradation of the composites, as 

determined by TGA. This temperature occurs between 289 ˚C and 352 ˚C for all composites 

included in Table II. There is an overall increase in this value with an increase in the cure 

temperature (cure sequences I-V, Table II). However, the small differences observed between 

cure sequences I, II, and III are insignificant considering the overall trend and may be 

attributed to experimental variation. As mentioned before, with higher cure temperatures, 
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partial degradation of the less stable filler components (such as hemicellulose) increases 

during the cure. Indeed, reports indicate that hemicellulose starts to degrade at temperatures 

as low as 175 ˚C.27 When performing the TGA of those partially degraded materials (cure 

sequences IV-VII), a higher temperature is required to attain T10, since the composite has a 

higher content of more stable components. The T10 values of samples that were not post-

cured (cure sequences VI and VII, Table II) are slightly lower than the T10 of the composite 

cured under cure sequence IV (Table II). This indicates that the two hour post-cure at 200 ˚C 

(cure sequence IV, Table I) is probably responsible for partial degradation of the filler. 

Furthermore, the rice hulls alone exhibit a T10 of 286 ˚C (result not shown in Table II), which 

implies that temperatures lower than T10 for the composites may already start degrading the 

filler. 

 With the exception of three entries in Table II, the residue left after 650 ˚C during the 

TGA corresponds to 14 wt %. For the reasons expressed earlier, the composite cured under 

cure sequence V had a higher residue content. Presumably, the higher temperature employed 

during the cure degraded the less stable filler components to a greater extent, leaving a higher 

concentration of minerals and more stable structures in the composite. The slightly higher 

residue content found for the sample cured using cure sequence I may be attributed to 

experimental variables when weighing the filler and resin for preparation of the composite. 

The residue is rich in silica, as confirmed later during X-ray map analysis and as reported in 

the literature for rice straw.28 

 Finally, most of the composites afforded 4-6 wt % of soluble materials after cure 

(cure sequences I-V, Table II). This indicates that the majority of the resin components were 
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incorporated into the resin during the cure and that a high crosslink density has been attained. 

In the two cure sequences where a post-cure step has not been employed (cure sequences VI 

and VII, Table II), a much larger soluble content has been found. From the 1H NMR spectra 

of the extracts, it can be clearly seen that the soluble content recovered from the composites 

(Figures 1A and 1B) resembles the unreacted CLO (Figure 1D). The intensity of the peaks in 

Figure 1A is much lower than that of Figures 1B and 1D due to the low amount of soluble 

materials recovered, but the presence of the methylene hydrogen peaks between 4.0 ppm and 

4.5 ppm confirms the presence of a triglyceride unit in the extract. Also worth mentioning is 

the fact that the rice hulls alone exhibited a soluble content of 10 wt % (result not shown in 

Table II), consisting of an oily material rich in hydrocarbon residues as can be seen from the 

peaks between 0.5 ppm and 2.5 ppm in the 1H NMR spectrum (Figure 1C), which correspond 

to hydrogens attached to sp3 hybridized carbons. 

 A comparison of the DSC curves of rice hulls and composites cured under different 

cure sequences is provided in Figure 2. The most distinctive feature of these curves is the 

endothermic peak that occurs at 194 ˚C for the rice hulls (Figure 2C). This peak is attributed 

to volatilization of compounds formed during degradation of the hemicellulose,29 and 

matches the beginning of the second weight loss step observed in the TGA curve (figure not 

shown). The rice hulls also exhibit a change in the baseline at 152 ˚C that is not presently 

understood. In the composite undergoing cure sequence VII (Figure 2A), the endothermic 

peak is less intense and shifts to a lower temperature (190 ˚C). This phenomenon can 

berelated to partial degradation of the hemicellulose during the cure process. Indeed, during 

thermal degradation, the hemicellulose chain is broken down to smaller structures that  
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Figure 1. 1H NMR spectra of: (A) extract of a composite cured under cure sequence IV, (B) 
extract of a composite cured under cure sequence VII, (C) extract of rice hulls, (D) 

conjugated linseed oil. 
 

require lower temperatures to volatilize. Also, since some components had already 

volatilized during cure, the intensity of the peak is noticeably lower. For the composite cured 

under cure sequence IV (Figure 2B), the endothermic peak has completely disappeared and 

no transitions are observed between 0 ˚C and 250 ˚C, indicating that the resin is fully cured 

and the composite is completely stable in that temperature range. The transitions occurring 

after 250 ˚C can be attributed to thermal degradation of the samples and won't be individually 

analyzed here. 
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Figure 2. DSC curves of: (A) a composite cured under cure sequence VII, (B) a composite 

cured under cure sequence IV, (C) rice hulls. 
 

 Given the results presented so far, cure sequence IV yields a fully cured resin and a 

composite with the best mechanical properties among those prepared in this section. 

Therefore, cure sequence IV has been used in the preparation of all composites in the 

remainder of this work.  

Influence of pressure during cure on the properties of the rice hull biocomposites. 

Variation of the cure pressure during preparation of the composites has an impact on the final 

properties obtained, as can be seen in Table III. Young's modulus increases when the 

pressure increases from 276 psi to 600 psi. In this case, an increase in the pressure forces, by 

a purely mechanical action, unfavorable interactions between the hydrophobic resin and the 

hydrophilic filler. The increase in pressure minimizes the presence of micro-voids in the final 
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composites, and therefore improves the modulus. For the tensile strength, there is a decrease 

when the pressure is increased from 400 psi to 600 psi (Table III). Lower tensile strengths 

indicate that the composites are less tolerant to deformations and they become more brittle 

when higher pressures are used during the cure. When a very low pressure (276 psi) is used 

in the preparation of the composite, the presence of micro-voids is so significant that even the 

tensile strength of the material is compromised. 

 
Table III. Tensile test, DMA, TGA and Soxhlet extraction results for rice hull composites 

containing 70 wt % rice hulls, cured under various pressures using cure sequence IV. 

Pressure 
(psi) E (GPa) Tensile strength 

(MPa) 
Tg 

(˚C) 

E' at 
130˚C 
(MPa) 

T10 
(˚C) 

Residue 
(wt %) 

Soluble 
fraction 
(wt %)a 

276 1.6 ± 0.3 5.5 ± 1.2 66 37 309 15 6 
400 1.8 ± 0.1 6.7 ± 0.7 68 336 304 14 5 
500 2.0 ± 0.3 6.2 ± 0.8 69 417 306 15 6 
600 2.3 ± 0.5 5.9 ± 0.6 52 220 304 15 5 

a Determined by Soxhlet extraction. 

 

 A slight increase in the Tg is observed by increasing the pressure from 276 psi to 500 

psi (Table III), but due to the very low variability of Tg in that pressure range, it is difficult to 

establish a relationship between cure pressure and the glass transition temperature of the 

composites, as can be observed in Figure 3. Nevertheless, the composite cured under 600 psi 

exhibited a Tg of 52 ˚C. This constitutes a significant decrease from the Tg of the composite 

cured at 500 psi. In one of our previous studies,23 it was demonstrated that the cure pressure 

can affect the polymerization of the resin. Here, it can be assumed that the high pressure 

affected the mobility and dispersion of the resin co-monomers through the filler particles 

during polymerization, and as a consequence, a matrix with a lower Tg was obtained. The 
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storage moduli follow the same trends observed for the Tg's, with an increase when the cure 

pressure increases from 276 psi to 500 psi (Table III, Figure 3), and a significant decrease in 

modulus when the pressure increases from 500 psi to 600 psi. The remarkably low modulus 

obtained using a 276 psi cure pressure (Figure 3) can be attributed to poor filler-resin 

interaction, which compromises the stress transfer from the matrix to the filler. 

 

 
Figure 3. Storage modulus and tan delta curves for samples cured under 276 psi, 400 psi, and 

500 psi. The composites have 70 wt % of ground filler and were cured under the specified 
pressure using cure sequence IV. 

 

 The T10 values, residue and soluble fraction change very little when different cure 

pressures are used during preparation of the composites. The T10 value and the residue are 

closely related to the resin and material composition, whereas the soluble fraction is an 

indirect measurement of the crosslink density of the matrix. Since the filler material and resin 
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composition have been kept constant throughout this study, no significant changes were 

expected for the thermal degradation profile of the composites, and a soluble content of 

approximately 5 wt % is expected for any composite cured under cure sequence IV (Table 

II). 

 Since the aim of this work is to produce a rigid composite with good mechanical 

properties for possible replacement of petroleum-derived polymers, the cure pressure that 

gives the stiffest material (600 psi) has been chosen for use in the remainder of this work. 

Influence of filler load on the properties of the rice hull biocomposites. Table IV shows 

the effect of the filler load on the composite properties. There is an increase in Young's 

modulus, tensile strength, and storage modulus when the filler load is increased from 50 wt 

% to 70 wt %. The increase in the mechanical properties reveals the reinforcement behavior 

of the rice hulls in the composite, in a filler load range where there is enough resin to wet all 

of the filler particles. This reinforcing behavior of the rice hulls can also be observed when 

comparing the storage modulus of an unreinforced conjugated soybean oil-based resin and 

any of the composites shown in Table IV. Indeed, a significant increase is observed 

whenever rice hulls are present. Beyond 70 wt % filler load, a decrease in the tensile 

properties is seen. This drop in the tensile properties is attributed to a lack of resin to bind all 

the filler particles efficiently, resulting in agglomeration of the filler and weak points in the 

composite structure that are responsible for the lower performance of the material. The same 

phenomenon was observed previously with soybean hull composites.23 As for the storage 

modulus, there is a significant decrease above 70 wt % filler load (Table IV) for reasons 



www.manaraa.com

  53 

 

mentioned above. The variation in storage modulus for samples containing 80 wt % and 90 

wt % filler is negligible when compared to the drop observed between 70 wt % and 80 wt %. 

 
Table IV. Tensile test, DMA, TGA and Soxhlet extraction results for rice hull biocomposites 

prepared under cure sequence IV and 600 psi with varying filler loads. 

Filler load 
(wt %)  E (GPa) 

Tensile 
strength 
(MPa) 

Tg (˚C) 
E' at 

130˚C  
(MPa) 

T10 
(˚C) 

Residue  
(wt %) 

Soluble 
fraction 
 (wt %)c 

-a - - -51, 37b 44 344 0 13 
50 0.6 ± 0.2 1.1 ± 0.8 32 82 308 9 7 
60 1.4 ± 0.4 4.7 ± 1.6 63 172 302 10 5 
70 2.3 ± 0.5 5.9 ± 0.6 52 220 304 15 5 
80 1.7 ± 0.8 2.6 ± 1.6 -18, 93b 83 294 12 5 
90 0.9 ± 0.5 0.6 ± 0.5 -29, 66b 87 292 13 4 

a Unreinforced resin containing 50 wt % of conjugated soybean oil, 35 wt % of n-butyl 
methacrylate, and 15 wt % of divinylbenzene.23 

b Two distinct Tg's were observed. 
c Determined by Soxhlet extraction. 
 

 Between 50 wt % and 70 wt % filler load, no regular pattern in the Tg values could be 

distinguished (Table IV). However, two Tg's were observed when the filler load was 80 wt % 

and 90 wt % (Table IV). In these instances, the high filler load may have compromised the 

dispersion of the different co-monomers throughout the system, affecting the chain growth 

during polymerization. For the unreinforced conjugated soybean oil-based resin, a difference 

in the reactivity of the co-monomers promoted a phase separation of the resin. Indeed, a 

phase separation of vegetable oil-based resins has been previously observed,10, 22, 23 and it is 

believed that the two phases formed consist of a vegetable oil-rich phase and a DVB-rich 

phase. 
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 The T10 values do not vary much for filler contents varying between 50 wt % and 70 

wt %, and no specific trend is observed (Table IV). There is a 10 ˚C drop in T10 for 80 wt % 

and 90 wt % filler loads with respect to the 70 wt % and 60 wt % composites, respectively. 

As mentioned before, the T10 value of the rice hulls alone (286 ˚C) is lower than that of the 

resin (344 ˚C). So in systems where the rice hulls are in a large excess (80 wt % and beyond), 

it is normal to observe a decrease in T10. The percent residue increases when the filler load 

increases from 50 wt % to 70 wt % (Table IV). The rice hulls alone exhibited a residue 

content of 18 wt % (result not shown in Table IV), while the unreinforced resin had left no 

residue. This indicates that the majority of the residue left after thermal degradation comes 

from the reinforcement. Therefore, it is expected that an increase in the filler content will 

produce an increase in the residue left after degradation. This trend was not observed for the 

samples containing 80 wt % and 90 wt % of the filler, which exhibit essentially the same 

residue, with a negligible difference. 

Figure 4 provides a comparison of the thermal degradation patterns of the 

unreinforced resin and samples containing 50 wt % and 70 wt % rice hulls. From this 

comparison, a few key features from degradation of the filler stand out, like the loss of water 

between 100 ˚C and 150 ˚C, and the two distinct degradation steps before and after 450 ˚C, 

which are related to the cellulose/lignin composition of the filler. There is also a noticeable 

increase in residue percentage with filler content. 

There was not a significant variation in the soluble fraction recovered from the 

composites with different filler loads. The values ranged from 4 wt % to 7 wt % solubles 

(Table IV). With such a small variation, it is impossible to establish a reliable relationship 
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between the filler content and the amount of solubles recovered after Soxhlet extraction. The 

unreinforced resin, on the other hand, exhibited 13 wt % of soluble materials, consisting 

mainly of unreacted oil. These results suggest that the resin is the main source of soluble 

content in the composites, corroborating the results shown in Figure 1. 

 

 
Figure 4. TGA curves for a soybean oil-based unreinforced resin, and composites containing 
50 wt % and 70 wt % rice hulls. The resin composition was 50 wt % of conjugated vegetable 

oil, 35 wt % of n-butyl methacrylate, and 15 wt % of divinylbenzene. 
 

 As stated before, the goal of this work is to find a rice hull biocomposite with the best 

mechanical properties possible. Considering the results presented in Table IV, a filler load of 

70 wt % gave the best overall properties and has, therefore, been used to study the influence 

of drying and grinding the filler on the final properties of the composite. 
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Influence of drying and grinding the filler on the properties of the rice hull 

biocomposites. Table V summarizes the properties obtained for four composites prepared 

under the same conditions, differing only with respect to the condition of the rice hulls used 

as the filler. The rice hulls used were (a) as received; (b) dried, but not ground; (c) non-dried, 

but ground; (d) dried and ground. 

 
Table V. Tensile test, DMA, TGA and Soxhlet extraction results for rice hull biocomposites 
prepared under cure sequence IV and 600 psi containing 70 wt % of various rice hull fillers. 

Rice hulls E (GPa) 
Tensile 

strength 
(MPa) 

Tg (˚C) 
E' at 

130˚C 
(MPa) 

T10 
(˚C) 

Residue 
(wt %) 

Soluble 
fraction 
(wt %)a 

as 
received 

0.7 ± 0.4 1.4 ± 0.8 40 21 297 16 6 

dried, non-
ground 

2.3 ± 0.4 5.7 ± 0.6 41 280 303 16 5 

non-dried, 
ground 

1.0 ± 0.3 1.7 ± 1.0 58 199 298 17 5 

dried, 
ground 

2.3 ± 0.5 5.9 ± 0.6 52 220 304 15 5 

a Determined by Soxhlet extraction. 

 

 The mechanical properties of these biocomposites reveal a great improvement in the 

composite's performance whenever the rice hulls are dried before use. Indeed, the Young's 

modulus increases when the whole rice hulls are dried before being impregnated with the 

resin (Table V). Similarly, there's an increase in the Young’s modulus when the ground rice 

hulls are dried (Table V). The tensile strength of the composites show the same trend, with 

increases when drying the whole and the ground rice hulls (Table V). Along the same lines, 

the storage modulus at 130 ˚C increases when using dried versus non-dried whole rice hulls, 

and also increases when drying the ground rice hulls before use. This increase in the 
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mechanical properties is probably related to the fact that the lower moisture content in the 

dried rice hulls may lead to a better filler-resin interaction, which gives better stress transfer 

from the matrix to the reinforcement, and consequently better tensile properties. 

 Grinding the rice hulls had little effect on the tensile properties of the composites, in 

comparison to the variations observed between dried and non-dried fillers. The slight 

increase in the Young's modulus observed when comparing non-dried, whole rice hulls and 

ground rice hulls can be neglected, since it falls within the standard deviations of the 

corresponding samples (Table V). Also, virtually no change was observed when comparing 

dried rice hulls (Table V). The same happens with the tensile strength; increases within the 

standard deviation of the samples are observed for non-dried, whole and ground rice hulls, 

and for dried, whole and ground rice hulls (Table V). The better tensile properties normally 

obtained for composites with smaller particle sizes are compensated for here by a loss in the 

aspect ratio of the non-ground rice hulls. Therefore, grinding the rice hulls means going from 

an elongated structure with better tensile properties, but lower dispersion in the matrix, to 

more spherical particles, which disperse better in the matrix, but show lower tensile 

properties. 

 For the storage modulus at 130 ˚C, drying the rice hulls has an effect similar to that 

observed on the tensile properties. A significant increase occurs when drying the whole rice 

hulls (Table V). A more subtle increase is observed between non-dried and dried, ground rice 

hulls (Table V). The effect on the storage modulus at 130 ˚C of grinding the rice hulls is 

unclear as opposite trends were observed for dried and non-dried fillers. An increase was 

observed when comparing whole and ground, non-dried rice hulls, whereas a decrease was 
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observed when comparing whole and ground, dried rice hulls (Table V). The Tg, on the other 

hand, appears to be more sensitive to variations in the filler particle size. Indeed, grinding the 

rice hulls increases the Tg of the composite by at least 11 ˚C (Table V). This effect has been 

observed previously with soybean hull composites,23 and is attributed to a better mix of resin 

and filler when smaller particle sizes are used. Very little effect was observed when 

comparing the Tg’s of non-dried and dried, whole rice hulls or when comparing non-dried 

and dried, ground rice hulls (Table V). 

 The T10 values were only slightly changed when comparing dried and non-dried rice 

hulls. The slight differences observed between the T10 values of non-dried and dried, whole 

rice hulls, and of non-dried and dried, ground rice hulls are due to the moisture content of the 

filler. When the filler is dried before use, it loses approximately 7 wt % due to moisture 

(result not shown in Table V). For the composites reinforced with non-dried rice hulls, T10 

reflects the loss of that moisture content from the filler, along with partial volatilization of 

some resin components, and, as the moisture should be completely lost at around 100 ˚C, the 

T10 value of those materials is slightly shifted to lower temperatures. From the negligible 

difference observed between the T10 values of non-ground and ground, dried hulls, and non-

ground and ground, non-dried hulls (Table V), it can be concluded that grinding the rice hulls 

has no effect on the T10 values of the composites. 

 Finally, there's virtually no variation in residue content and soluble content extracted 

upon drying and/or grinding the rice hulls (Table V). As mentioned before, those properties 

are related to the amount of filler and the composition of the resin used in the preparation of 
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the composites, and, since those parameters are kept constant for all of the samples shown in 

Table V, no variation was expected here. 

SEM analysis of the rice hull biocomposites. Figure 5 depicts the SEM image of 

cryofractured and cut biocomposite samples. Samples made with dried and non-dried rice 

hulls were analyzed and compared. Both composites had a filler load of 70 wt % and were 

cured under 600 psi at 180 ˚C for 5 hours and then post-cured at ambient pressure for 2 hours 

at 200 ˚C. 

 
Figure 5. SEM images of: (A) a cryofractured biocomposite reinforced with dried rice hulls 

(35x magnification), (B) a cut biocomposite reinforced with dried rice hulls (100x 
magnification), (C) a cryofractured biocomposite reinforced with non-dried rice hulls (35x 

magnification), (D) a cut biocomposite reinforced with non-dried rice hulls (100x 
magnification). Both composites had 70 wt % of ground filler and were cured under 600 psi 

at 180 ˚C for 5 hours and then post-cured at ambient pressure for 2 hours at 200 ˚C. 
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 The brighter regions on the images represent structures of higher density, located 

mostly on the surface of the rice hulls. Those structures will be further discussed later in the 

text. The porous structures observed, for example, in Figure 5B, correspond to rice hull 

particles. As expected, the large amount of rice hulls employed (70 wt %), resulted in 

composites where the resin is present in minimal amounts, and functions mainly as a binder 

between the rice hull particles. Significant voids are observed in all four images, which 

indicate the overall bad interaction between filler and resin. The presence of voids also 

indicates weak regions in the composites where cracks can be easily generated and/or 

propagated. 

 The images of cryofractured composites (Figures 5A and 5C) show a more significant 

exposition of the silica structures, again indicating poor resin-filler adhesion. When the 

samples were fractured, the crack propagated along the resin-filler interface, leaving the rice 

hull particle surfaces exposed. Comparatively more of the silica structures can be seen in 

Figure 5C, where non-dried rice hulls were used. This is an indication that worse resin-filler 

interactions are obtained when non-dried filler particles are used, due to the incompatibility 

of the hydrophobic resin and the hydrophilic filler. Furthermore, Figure 5A shows more resin 

artifacts covering the rice hull particles. 

 Figures 5B and 5D show, in more detail, the filler-resin interface. The central area in 

Figure 5B shows a region where resin and filler interact well (there is no discontinuity 

between matrix and reinforcement). Nothing similar is observed in the entirety of Figure 5D, 

supporting the idea that worse filler-resin interactions are present when the fillers are not 

dried before their use as a reinforcement in manufacture of the biocomposites. 
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X-ray map of a rice hull biocomposite sample. An X-ray map of a rice hull biocomposite 

sample cured at 600 psi, under cure sequence IV, is shown in Figure 6. Figure 6A shows the 

SEM image of the cut biocomposite at 200x magnification. From that image, it is clear that 

the denser region (brighter areas) is more abundant on the surface of the rice hull particles. 

The presence of significant amounts of silica in rice straw ash suggests that these high-

density structures are most likely SiO2.28 

 

 
Figure 6. Si X-ray map. (A) 200x magnification SEM image of a biocomposite with 70 wt % 

of ground filler, cured under 600 psi at 180 ˚C for 5 hours and then post-cured at ambient 
pressure for 2 hours at 200 ˚C. (B) X-ray map of line Si Ka on the same section shown in 

(A). 
 

Figure 6B shows the Si X-ray map. By comparing Figures 6A and 6B, it becomes 

clear that rice hulls are rich in Si and that the Si-containing structures are more abundant on 

the surface of the rice hulls. The presence of silica in the rice hulls explains the high 

mechanical properties obtained for the biocomposites prepared in this work. 
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Conclusions 

 Rice hull biocomposites have been prepared by the free radical polymerization of a 

CLO-based resin. After a cure study, an optimal cure sequence of 5 hours at 180 ˚C under 

pressure, followed by a 2 hour post-cure under ambient pressure, has been established. 

Mechanical data, along with TGA, Soxhlet extraction and DSC results show that the post-

cure step is crucial in order to get a fully cured resin, and the best CLO incorporation in the 

matrix. The effects of pressure during cure, filler load, and drying and grinding the filler on 

the final properties of the biocomposites have been assessed and optimal conditions have 

been established for preparation of the rice hull-reinforced composites. A pressure of 600 psi 

during the cure has resulted in the stiffest material. The use of 70 wt % of dried and ground 

(<1 mm diameter particle size) filler affords the best overall properties. SEM shows evidence 

of weak filler-resin interaction due to differences in the hydrophilicity of the matrix and the 

reinforcement. The SEM analysis also provides an indication of a denser material present on 

the surface of the rice hulls. The Si X-ray map indicated a high Si content in that material, 

which consists, most likely, of silica. The presence of significant amounts of silica in the rice 

hulls may account for the high thermal stability and the high mechanical properties obtained 

for the rice hull biocomposites. A thorough resin composition study is currently being carried 

out and will soon be reported. 
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Abstract 

A free radical thermoset resin consisting of a copolymer of conjugated linseed oil 

(CLO) or conjugated soybean oil (CSO), n-butyl methacrylate (BMA), divinylbenzene 

(DVB), and maleic anhydride (MA) has been reinforced with rice hulls. Composites 

containing 70 wt % of the filler were compression molded, the conjugated oil content in the 

resin was kept constant at 50 wt %, and the relative amounts of BMA, DVB, and MA were 

varied to afford composites with different resin compositions. Tensile tests, DMA, TGA, 

and Soxhlet extraction of the different composites prepared have been employed to establish 

the relationship between resin composition and the properties of the composites. Overall, the 

mechanical properties tend to improve when MA is introduced into the resin. SEM of 

selected samples showed a better filler-resin interaction for MA-containing composites and 

samples prepared from CLO exhibit better properties than those prepared from CSO.  
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Introduction 

With the shortage in petroleum and growing concerns about the environment, the use 

of biorenewable materials for the production of bioplastics and biocomposites has recently 

gained increasing attention. Natural oils, which consist of triglycerides often containing 

polyunsaturated carbon chains, represent a promising component in the preparation of 

biobased materials due to their ready availability and low cost. 

In particular, linseed and soybean oils have been used as major components in 

various resin formulations. Semi-conducting materials have been prepared from a 

poly(urethane amide) of linseed oil blended with poly(1-naphthylamine).1 Linseed oil 

monoglyceride maleates have been co-polymerized with styrene to form a matrix for wood 

flour composites.2 Clay composites have also been prepared using a matrix where 

conjugated linseed oil was co-polymerized with divinylbenzene (DVB) and acrylic acid 

(AA),3 and a similar resin, containing linseed oil, DVB, styrene (ST) and AA, has also been 

studied.4 Linseed oil has also been used as the starting material in the preparation of an AA-

esterified monomer for later co-polymerization with ST.5 Also, polyester amides have been 

made from linseed oil.6 Along the same lines, polyurethanes,7 an epoxy resin for glass fiber 

composites,8 and multicomponent thermoset resins from soybean oil have been reported 

among several other reports not cited here.9  

The high degree of unsaturation in these oils (approximately 6 C=C per triglyceride 

for linseed oil and 4.5 for soybean oil) makes them very attractive as comonomers in free 

radical resins. The fatty acid composition of linseed oil follows: 4% stearic acid, 19% oleic 

acid, 15% linoleic acid, 57% linolenic acid, and 5% of other fatty acids,10 while soybean oil 
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consists of 14% palmitic acid, 4% stearic acid, 24% oleic acid, 52% linoleic acid, and 6% 

linolenic acid.11 Despite the high number of carbon-carbon double bonds in these oils, it is 

known that a significantly higher reactivity towards free radical polymerization processes is 

attained upon conjugation of the carbon-carbon double bonds.12 Our group has investigated 

resins formed by the free radical copolymerization of conjugated linseed oil with 

acrylonitrile and DVB,10 and the thermal polymerization of conjugated linseed oil in the 

presence of ST and DVB.13 The cationic polymerization of a modified linseed oil and 

dicyclopentadiene (DCPD) has also been studied by the Larock group,14 as well as various 

resins containing conjugated soybean oil.15-17 

More recently, we have studied the reinforcement of a conjugated soybean oil-based 

thermoset matrix containing DVB and n-butyl methacrylate (BMA) with corn stover,18 and 

soybean hulls.19 In the latter system, DCPD was employed in the resin to partially substitute 

either DVB or BMA in an attempt to improve the mechanical properties and lower the cost 

of the resulting composite. A similar resin, containing unmodified tung oil, has been 

reinforced with spent germ by us.20, 21 

Rice hulls are a major agricultural by-product from the rice industry and very few 

uses have been proposed for it. It normally ends up being disposed of in landfills or just 

burned to produce an ash rich in silica.22 The use of rice hulls as a reinforcement for 

polypropylene composites has been reported recently, and the promising results suggest that 

it may work as a good filler in the preparation of bio-based composites.23 The preparation of 

rice hull composites from conjugated linseed oil has been optimized in Part 1 of this 

project.24 The effect of cure sequence, pressure, filler load, particle size, and drying of the 
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filler on the composite properties has been studied and the best conditions for preparation of 

these rice hull-reinforced materials have been established.24  

In Part 2 of this project, we report the preparation of rice hull composites with resins 

of various compositions. All of the resins studied here contain 50 wt % of the conjugated 

vegetable oil and different concentrations of maleic anhydride (MA), BMA, and DVB. MA, 

in this system, acts as a compatibilizer between the hydrophobic matrix and the hydrophilic 

filler. The effect of the concentration of the different comonomers used on the final 

composite properties has been assessed by means of tensile tests, dynamic mechanical 

analysis (DMA), thermogravimetric analysis (TGA), Soxhlet extraction, scanning electron 

microscopy (SEM), and proton nuclear magnetic resonance spectroscopy (1H NMR). 

Experimental 

Materials. BMA was purchased from Alfa Aesar (Ward Hill, MA). DVB, MA and di-t-

butyl peroxide (TBPO) were purchased from Sigma-Aldrich (St. Louis, MO). All were used 

as received. Superb linseed oil was provided by ADM (Red Wing, MN) and soybean oil 

(Great Value brand – Bentonville, AR) was purchased in a local grocery store. Both oils 

have been conjugated using a rhodium catalyst, following a method developed and 

frequently used by our group.12 The rice hulls were provided by the Missouri Crop 

Improvement Association (Columbia, MO). They were ground to <1 mm diameter particle 

size and dried overnight at 70 ˚C in a vacuum oven before use. 

General procedure for preparation of the composites. The crude resin was obtained by 

mixing the conjugated vegetable oil, BMA and DVB in a beaker. MA was melted in a hot 

water bath and quickly added to the crude resin mixture under agitation, along with the free 
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radical initiator TBPO. The rice hulls were impregnated with the crude resin and 

compression molded for 5 hours at 180 ˚C and 600 psi. The composites were then removed 

from the mold and post-cured in a convection oven for 2 hours at 200 ˚C at ambient 

pressure. An optimal filler load of 70 wt % had been pre-established in Part 1 of this project 

and has been kept constant throughout Part 2.24 In all composites produced, the resin has a 

conjugated vegetable oil content of 50 wt % and the optimal amount of TBPO has been 

determined to be, in preliminary tests, an extra 5 wt % of the total resin weight. The amounts 

of DVB, BMA and MA have been varied, as indicated in the text, to produce composites of 

various compositions. 

Characterization of the composites. Tensile tests were conducted at room temperature 

according to ASTM D-638 using an Instron universal testing machine (model 5569) 

equipped with a video extensometer and operating at a crosshead speed of 2.0 mm/min. 

Dogbone-shaped test specimens were machined from the original samples to give the 

following gauge dimensions: 57.0 mm x 12.7 mm x 4.5 mm (length x width x thickness, 

respectively). For each composite, seven dog-bones were cut and tested. The results 

presented in the text are the average of these measurements along with the calculated 

standard deviation. 

DMA experiments were conducted on a Q800 DMA (TA Instruments, New Castle, 

DE) using a three point bending mode with a 15.0 mm clamp. Rectangular specimens of 

22.0 mm x 8.5 mm x 1.5 mm (length x width x thickness, respectively) were cut from the 

original samples. Each specimen was cooled to -60 ˚C and then heated at 3 ˚C/min to 250 

˚C. The experiment was conducted using a frequency of 1 Hz and an amplitude of 14 µm 
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under air. Two runs for each sample were carried out and the results presented in the text 

reflect the average of the two measurements. 

A Q50 TGA instrument (TA Instruments, New Castle, DE) was used to measure the 

weight loss of the samples under an air atmosphere. The samples (~10 mg) were heated from 

room temperature to 650 oC at a rate of 20 oC/min. 

Soxhlet extraction was conducted to determine the amount of soluble materials in the 

composites. A 2.0 g sample of each composite was extracted for 24 h with dichloromethane 

(CH2Cl2). After extraction, the solubles were recovered by evaporating the CH2Cl2 under 

vacuum. Both soluble and insoluble materials were dried overnight at 70 ˚C. The dried 

soluble fraction was then dissolved in deuterated chloroform (CDCl3) and the 1H NMR 

spectrum was obtained using a Varian Unity spectrometer (Varian Associates, Palo Alto, 

CA) operating at 300 MHz. The 1H NMR spectra helped to determine the identity of the 

solubles in each sample. 

For the SEM analysis, each sample was frozen with liquid nitrogen prior to fracture 

(cryofracture). A second section of the sample was mechanically cut and shaved with a razor 

blade to provide a smooth cross section. Both cryofractured and cut samples were examined 

using an Hitachi S-2460N variable-pressure SEM. The microscope was operated at 20 kV 

accelerating voltage, with 60 Pa of helium atmosphere, and a 25 mm working distance. 

Backscattered electron images were collected using a Tetra BSE detector (Oxford 

Instruments) at 35x and 100x magnifications. 
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Results and Discussion 

Mechanical properties of conjugated linseed oil (CLO)-containing composites. The 

tensile test and DMA results of all samples made with CLO are summarized in Table I. 

Young's moduli, tensile strengths, storage moduli at 130 ˚C, and Tg's are reported for the 

CLO-containing composites with different resin compositions. 

 
Table I. Tensile tests and DMA results for biocomposites made from conjugated linseed oil 

(CLO). 

Entry BMA  
(wt %) 

DVB  
(wt %) 

MA  
(wt %) 

Young's 
Modulus  

(GPa) 

Tensile 
Strength 
 (MPa) 

Storage Modulus 
at 130 ˚C (MPa) 

Tg 
(˚C) 

1 35 15 - 2.3 ± 0.5 5.9 ± 0.6 220 52 
2 35 10 5 1.9 ± 0.4 7.9 ± 1.6 609 64 
3 35 5 10 1.9 ± 0.3 7.1 ± 1.0 391 45 
4 35 - 15 1.7 ± 0.4 5.8 ± 0.9 345 33 
5 30 15 5 2.1 ± 0.7 7.0 ± 1.3 141 0, 69a 

6 25 15 10 2.1 ± 0.3 8.4 ± 1.2 350 63 
7 20 15 15 2.3 ± 0.4 9.1 ± 1.7 255 75 
8 30 10 10 1.7 ± 0.5 7.8 ± 1.3 332 71 
9 30 5 15 2.1 ± 0.6 8.0 ± 1.3 258 68 
10 25 10 15 1.8 ± 0.3 7.7 ± 1.0 476 78 

a Two Tg's were observed. 
 

Comparing entries 1-4 in Table I, the effect of gradual substitution of DVB by MA 

on the mechanical properties can be assessed. There is an overall decrease in Young's 

modulus (E) from 2.3 GPa to 1.7 GPa when 15 wt % DVB is replaced by MA (entries 1 and 

4, respectively, Table I). Although the loss in E isn't dramatic, it reveals that DVB is 
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probably the component mainly responsible for the stiffness of the resin. A similar trend was 

observed when DVB was replaced by DCPD in soybean hull composites.19 

The tensile strength of the composites exhibits a different trend upon gradual 

substitution of DVB by MA (entries 1-4, Table I). There is an increase in the tensile strength 

for the samples containing 5 wt % and 10 wt % MA (7.9 MPa and 7.1 MPa, respectively, 

entries 2 and 3, Table I) in comparison with the sample where MA is completely absent (5.9 

MPa, entry 1, Table I). This reveals that MA behaves as a compatibilizer between the resin 

and the filler in this system. Indeed, the C-C double bond in MA can be co-polymerized 

with the resin, while the anhydride group can be opened by the hydroxyl groups present in 

the cellulose and hemicellulose in the rice hulls at the high temperatures employed during 

the cure. With a better filler-resin interaction whenever MA is present, there is better stress 

transfer from the matrix to the filler, resulting in a higher tensile strength for the composite. 

For entry 4 (Table I), the decrease in tensile strength (5.8 MPa) is related to the absence of 

DVB in the resin. In this case, the loss in mechanical properties due to the absence of DVB 

is not compensated for by the better filler-resin interaction imparted by the presence of MA. 

A similar trend is observed for the storage modulus at 130 ˚C (E') and the Tg of the 

samples when substituting DVB by MA (entries 1-4, Table I). In both cases, there is an 

increase in the value when 5 wt % MA is introduced into the resin (entry 2, Table I). E' 

increases from 220 MPa to 609 MPa while Tg increases from 52 ˚C to 64 ˚C (entries 1 and 2, 

Table I). As mentioned earlier, this increase is related to a better filler-resin interaction 

imparted by the presence of the MA. When the amount of DVB in the resin is below 10 wt 

% (entries 3 and 4, Table I), a decrease in E' from 609 MPa (entry 2) to 345 MPa (entry 4) 
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and Tg  from 64 ˚C (entry 2) to 33 ˚C (entry 4) is observed, due to the loss in rigidity of the 

system. 

When BMA is gradually substituted by MA, (entries 1 and 5-7, Table I) the Young's 

modulus isn't significantly affected, which reveals that, structurally, both molecules have 

similar characteristics. On the other hand, the tensile strength increases remarkably from 5.9 

MPa (entry 1, Table I) to 9.1 MPa (entry 7, Table I) when BMA is substituted by MA, 

showing, once again, the better filler-resin effect imparted by MA. No specific trend could 

be distinguished for the storage modulus at 130 ˚C when BMA was substituted by MA. 

There is an overall increase in Tg from 52 ˚C (entry 1, Table I) to 75 ˚C (entry 7, Table I) by 

substituting BMA with MA. The appearance of two Tg's (entry 5, Table I) isn't completely 

understood. In our previous work with soybean hulls,19 the appearance of two Tg's was 

related to the presence of comonomers with distinctly different reactivities (for example, 

conjugated soybean oil, BMA and DVB). 

When 5 wt % of DVB and 5 wt % of BMA are replaced with 10 wt % of MA, there 

is a decrease in Young's modulus from 2.3 GPa (entry 1, Table I) to 1.7 GPa (entry 8, Table 

I) due to the decrease in DVB content, as explained earlier. The tensile strength, storage 

modulus at 130 ˚C and Tg increase from 5.9 MPa, 220 MPa, and 52 ˚C to 7.8 MPa, 332 

MPa, and 71 ˚C, respectively. These variations show, once again, the gain in mechanical 

properties due to the addition of MA to the resin and the better filler-resin interaction. When 

an additional 5 wt % of DVB is replaced by MA (entry 9, Table I), the tensile properties are 

not significantly affected, since the difference in the Young’s modulus and the tensile 

strength between entries 8 and 9 (Table I) falls within the standard deviation of the 
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measurements. On the other hand, the storage modulus at 130 ˚C and the Tg decrease from 

332 MPa and 71 ˚C (entry 8, Table I) to 258 MPa and 68 ˚C (entry 9, Table I), respectively. 

Finally, the tensile properties of the sample with 25 wt % of BMA, 10 wt % of DVB, 

and 15 wt % of MA (entry 10, Table I) are comparable to those of the sample in entry 8, 

Table I. The difference in E and tensile strength fall within the standard deviation of the 

experiment and can be neglected. The only significant differences occur in the storage 

modulus at 130 ˚C, with an increase from 332 MPa (entry 8, Table I) to 476 MPa and in Tg, 

with an increase from 71 ˚C (entry 8, Table I) to 78 ˚C. 

The curves showing loss modulus (E”) versus temperature for selected formulations 

are given in Figure 1. For all of the curves shown, there is an overall decrease in loss 

modulus with an increase in temperature. This behavior is most likely the result of further 

reaction of the remaining carbon-carbon double bonds in the resin, which increases the 

crosslink density and gradually inhibits the dissipation of the energy through movement of 

the polymer chains. It is interesting to observe that the loss modulus plateaus at 

approximately 120 ˚C, when all carbon-carbon double bonds in the resin have, most likely, 

reacted. In the case of the sample containing 10 wt % DVB (Figure 1B), the lower amount 

of the crosslink agent results in a higher loss modulus, when compared to the other curves in 

Figure 1, for the entire temperature range studied. Indeed, if a lower crosslink density is 

attained, the polymer chains in the matrix are more free to dissipate the stress energy into 

movement, resulting in a higher loss modulus. For samples with the same DVB content 

(Figures 1A, 1C, and 1D), one can correlate the loss modulus behavior with the presence of 

MA in the resin. When MA is present (Figures 1C and 1D), the resulting better filler-resin 
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interaction provides more efficient stress transfer from the matrix to the reinforcement, 

preventing significant dissipation of energy into polymer chain motion, and as a 

consequence, a decrease in the loss modulus is observed (compare to Figure 1A). When 

comparing Figures 1C and 1D, a logical relationship between the amount of MA in the resin 

and the loss modulus can be established for temperatures lower than 25 ˚C. With a higher 

MA content, Figure 1D exhibits a lower loss modulus for the reasons already discussed. 

However, an interesting inversion of the loss modulus behavior is observed after 25 ˚C. This 

phenomenon may be related to the overall reactivity of the resin components. Indeed, the 

loss modulus decreases from 43 MPa to 18 MPa over the temperature range studied and 

shown in Figure 1D, whereas, for Figure 1C, the decrease observed is from 49 MPa to 9 

MPa, suggesting that more carbon-carbon double bonds remain unreacted for resins 

containing less MA. 

Thermal properties and Soxhlet extraction results of CLO-containing composites. The 

TGA and Soxhlet extraction results are summarized in Table II. T10 corresponds to the 

temperature required to attain loss of 10 wt % of the initial sample; T50 corresponds to the 

temperature required to attain loss of 50 wt % of the initial sample; and Tf corresponds to the 

temperature after which no further weight loss was detected. 

From the results in Table II, it can be seen that the changes in T10 are very subtle, 

when comparing composites with different resin compositions. Indeed, the T10 values vary 

only from 299 ˚C (entry 4, Table II) to 306 ˚C (entry 6, Table II) with no obvious trend, 

leading to the conclusion that this initial 10 % wt loss is not related to any component of the 

resin. It could be related, in fact, to initial degradation of the hemicellulose from the rice 

hulls.25 
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Figure 1. Loss modulus versus temperature for rice hull-reinforced composites with selected 
formulations: (A) 50 wt % CLO, 35 wt % BMA, and 15 wt % DVB; (B) 50 wt % CLO, 35 
wt % BMA, 10 wt % DVB, and 5 wt % MA; (C) 50 wt % CLO, 30 wt % BMA, 15 wt % 

DVB, and 5 wt % MA; (D) 50 wt % CLO, 20 wt % BMA, 15 wt % DVB, and 15 wt % MA. 
 

 For the T50 values, however, some general trends can be identified. For example, 

samples with 15 wt % of DVB exhibit a T50 value that varies from 425 ˚C (entry 5, Table II) 

to 433 ˚C (entries 6 and 7, Table II). When the DVB content is below 15 wt %, the T50 value 

ranges from 413 ˚C (entry 9, Table II) to 420 ˚C (entry 4, Table II), the exception being entry 

2 in Table II (408 ˚C). This suggests that DVB, with its higher reactivity in free radical 

polymerization processes, is readily polymerized. Therefore, samples with a higher DVB 

content possess a network with a higher crosslink density and, as a consequence, higher 

temperatures are required to attain a loss of 50 wt %. 
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Table II. TGA and Soxhlet extraction results for biocomposites made from conjugated 
linseed oil (CLO). 

Entry BMA  
(wt %) 

DVB  
(wt %) 

MA  
(wt %) 

T10 
(˚C) 

T50 
(˚C) 

Tf 
(˚C) 

Residue 
(wt %) 

Solubles  
(wt %)a 

Insolubles  
(wt %)a 

1 35 15 - 304 426 606 15 5 95 
2 35 10 5 300 408 635 11 4 96 
3 35 5 10 304 419 611 11 5 95 
4 35 - 15 299 420 595 12 6 94 
5 30 15 5 304 425 614 11 4 96 
6 25 15 10 306 433 599 11 5 95 
7 20 15 15 305 433 638 11 4 96 
8 30 10 10 302 418 601 11 5 95 
9 30 5 15 304 413 622 11 5 95 
10 25 10 15 301 416 607 10 5 95 

a Determined by Soxhlet extraction using CH2Cl2 for 24 hours. 
 

Only a few trends could be distinguished when analyzing the Tf values obtained for 

the composites prepared in this work. By comparison of entries 1 and 2 in Table II, it can be 

seen that substitution of 5 wt % of DVB by MA imparts an increase in Tf from 606 ˚C to 635 

˚C. This increase is probably related to the better interaction between filler and matrix after 

addition of MA, which gives the material a lower rate of weight loss in the later stages of 

thermal degradation. The same analysis can be made when comparing entries 1 and 5 in 

Table II. In this case, substitution of 5 wt % of BMA by MA also imparts an increase in the 

Tf value, from 606 ˚C to 614 ˚C. These observations correlate well with the results for the 

tensile strength (entries 1, 2 and 5, Table I). Comparing entries 2-4 in Table II, the Tf value 

decreases with the percentage of DVB in the resin, from 635 ˚C (entry 2, Table II) to 595 ˚C 

(entry 4, Table II). The results summarized in entries 1 and 8 (Table II) show a very similar 

thermal degradation profile for the corresponding samples. As mentioned earlier, the loss in 
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thermal stability by the lower amount of DVB in entry 8 is compensated for by the addition 

of MA, which gives a better matrix-filler interaction. For entries 6, 7, 9 and 10 (Table II), no 

specific trend is observed with a variation in the resin composition. 

The TGA and DTA curves of some selected formulations, along with the data for 

pure rice hulls, are given in Figure 2. The TGA curves shown in Figures 2B and 2C are 

representative of all MA-containing composites. For those samples, little variation in the 

residue left after thermal degradation is observed independent of the changes in resin 

composition. As discussed earlier, the rice hulls are the main source of residue in these 

composites. Figure 2D shows that approximately 18 wt % of the residue is left after thermal 

degradation of the rice hulls alone. This relatively high residue content has been associated 

with the presence of significant amounts of silica on the surface of the rice hulls.24 When 

comparing all of the resin formulations studied here, it can be observed that when no MA is 

present in the resin (entry 1, Figure 2A and Table II), a higher percentage of residue is left 

after thermal degradation. The close interaction of the anhydride groups in MA with the 

hydroxyl groups from cellulose and hemicellulose on the surface of the rice hulls may 

facilitate the degradation of the filler particles during the TGA experiment. For all of the 

other formulations, the variation in residue left after TGA is insignificant (Table II). 

The DTA curves in Figure 2 show that the thermal degradation of the materials 

occurs in five distinct steps. The first step, around 100 ˚C, consists of loss of water from the 

rice hulls. The second step, occurring at 330 ˚C has two components, one associated with 

degradation of the hemicellulose from the rice hulls25 (clearly observed in Figures 2A and 

 



www.manaraa.com

  79 

 

 
Figure 2. TGA and DTA curves for rice hull-reinforced composites with selected 

formulations: (A) 50 wt % CLO, 35 wt % BMA, and 15 wt % DVB; (B) 50 wt % CLO, 35 
wt % BMA, and 15 wt % MA; (C) 50 wt % CLO, 20 wt % BMA, 15 wt % DVB, and 15 wt 

% MA; and pure rice hulls (D). 
 

2D) and another associated with the degradation of MA. This latter component can be easily 

identified in Figures 2B and 2C. The third step occurs between 360 ˚C and 370 ˚C, and is 

associated with degradation of the cellulose from the rice hulls.25 It is therefore present in all 

curves shown in Figure 2. The fourth step, at 455 ˚C, is only seen in Figures 2A and 2C, 

andcan be associated with degradation of the DVB component of the resin. The last step 

occurs between 490 ˚C and 550 ˚C, and can be associated with the dissociation of carbon-

carbon bonds from the lignin in the rice hulls25 and the vegetable oil in the resin.  

Finally, all of the composites presented in Table II afforded 4-6 wt % of soluble 

materials after Soxhlet extraction with CH2Cl2 for 24 hours. Considering that the rice hulls 
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alone afford 10 wt % of soluble material (data not shown in Table II)24, this indicates that 

the majority of the resin components were incorporated into the resin during the cure and 

that a high crosslink density has been attained with essentially no differences between the 

various composite samples. 

SEM study of rice hull-reinforced composites. The SEM images of cut and cryofractured 

composites with different resin compositions is shown in Figure 3. Figures 3A and 3B show 

the cut cross section of composites where the resin composition is 50 wt % CLO, 35 wt % 

BMA, and 15 wt % DVB; and 50 wt % CLO, 20 wt % BMA, 15 wt % DVB, and 15 wt % 

MA; respectively. A comparison of Figures 3A and 3B reveals visual evidence of the better 

resin-filler interaction obtained when MA is added to the resin. Indeed, a greater number of 

voids can easily be seen in Figure 3A. Furthermore, Figure 3B indicates an overall better 

dispersion of the rice hull particles in the matrix. These observations are in agreement with 

the results in Tables I and II. 

Figures 3C and 3D show the cryofractured cross section of the same composites 

shown in Figures 3A and 3B at a higher magnification (100x). Here, again, it is possible to 

confirm the better filler-resin interaction obtained when MA is used as a comonomer in the 

resin. In Figure 3C, a gap can be seen between the resin and the filler particles, whereas in 

Figure 3D, it is almost impossible to discern any discontinuity in the interface between the 

resin and the filler. 

Comparison of the properties of conjugated soybean oil (CSO)- and CLO-containing 

composites. Table III summarizes the tensile test and DMA results for composites made 
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Figure 3. SEM images of: (A) cross section of a cut rice hull-reinforced composite (35x 
magnification) with resin composition 50 wt % CLO, 35 wt % BMA, and 15 wt % DVB; 
(B) cross section of a cut rice hull-reinforced composite (35x magnification) with resin 
composition 50 wt % CLO, 20 wt % BMA, 15 wt % DVB, and 15 wt % MA; (C) cross 

section of a cryofractured rice hull-reinforced composite (100x magnification) with resin 
composition 50 wt % CLO, 35 wt % BMA, and 15 wt % DVB; (D) cross section of a 

cryofractured rice hull-reinforced composite (100x magnification) with resin composition 50 
wt % CLO, 20 wt % BMA, 15 wt % DVB, and 15 wt % MA. 

 

from CSO and CLO. There is an increase in the tensile strength whenever 15 wt % of BMA 

is substituted by MA, independent of the oil used. For the CSO-containing samples, the 

tensile strength increases from 4.2 MPa to 7.0 MPa when MA is added to the resin (entries 1 

and 2, Table III). For the CLO-containing samples, the tensile strength increases from 5.9 

MPa to 9.1 MPa (entries 3 and 4, Table III). As mentioned earlier, MA acts as a 

compatibilizer between the matrix and the filler, helping in stress transfer and therefore 

improving the tensile strength. An increase in Young's modulus from 1.2 GPa to 2.2 GPa 



www.manaraa.com

  82 

 

(entries 1 and 2, Table III) is also observed when BMA is partially replaced by MA in the 

CSO-containing composites. For CLO-containing composites, there is no change in E upon 

substitution of BMA by MA (2.3 GPa, entries 3 and 4 in Table III). As expected, the use of 

CLO gives composites with better tensile properties than those made from CSO. In the 

absence of MA, the Young's modulus and the tensile strength increase, respectively, from 

1.2 GPa and 4.2 MPa to 2.3 GPa and 5.9 MPa (entries 1 and 3 in Table III) by changing the 

oil in the resin composition from CSO to CLO. The same is observed for the composites 

containing MA. E and the tensile strength increase, respectively, from 2.2 GPa and 7.0 MPa 

to 2.3 GPa and 9.1 MPa (entries 2 and 4 in Table III). This effect is related to the higher 

number of carbon-carbon double bonds present in the linseed oil compared to soybean oil. 

The higher degree of unsaturation of linseed oil results in a resin with a higher crosslink 

density. 

 
Table III. Tensile tests and DMA results for biocomposites made from conjugated linseed 

oil (CLO) and conjugated soybean oil (CSO). 

Entry Oil 
(50 wt %) 

BMA  
(wt %) 

DVB  
(wt %) 

MA  
(wt %) 

Young's 
Modulus  

(GPa) 

Tensile 
Strength 
 (MPa) 

Storage  
Modulus 
at 130 ˚C  

(MPa) 

Tg (˚C) 

1 CSO 35 15 - 1.2 ± 0.3 4.2 ± 0.7 215 24, 78a 

2 CSO 20 15 15 2.2 ± 0.9 7.0 ± 1.2 613 0, 92a 

3 CLO 35 15 - 2.3 ± 0.5 5.9 ± 0.6 220 52 
4 CLO 20 15 15 2.3 ± 0.4 9.1 ± 1.7 255 75 

a Two Tg's were observed. 
 

An increase in storage modulus is also observed when 15 wt % of BMA is replaced 

by MA. In composites containing CSO, the increase is more substantial (from 215 MPa to 
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613 MPa, entries 1 and 2 in Table III) than in those containing CLO (from 220 MPa to 255 

MPa, entries 3 and 4 in Table III). The effect of the oil on the storage modulus isn't clear as 

an increase from 215 MPa to 220 MPa is observed when CSO is replaced by CLO in MA-

free composites (entries 1 and 3 in Table III), whereas a substantial decrease from 613 MPa 

to 255 MPa is observed for the MA-containing composites (entries 2 and 4 in Table III). 

The glass transition temperatures measured by DMA and reported in Table III reveal 

an interesting phenomenon observed in previous studies.19 The presence of two very distinct 

Tg's for CSO-containing samples indicates that there is, most likely, a phase separation of the 

resin during polymerization of the different co-monomers. Due to its lower reactivity in 

comparison to CLO, CSO polymerizes at a slower rate during the cure of the resin. This 

slower polymerization rate results in an initially formed phase which is richer in the more 

reactive co-monomers, such as DVB. When most of the DVB is polymerized, a CSO-rich 

phase starts to form, thereby explaining the two Tg's observed. 

The tan delta curves of samples containing CSO and CLO are shown in Figure 4. 

Figure 4A is representative of all resin compositions containing CLO and MA (Table I). The 

CSO-containing composites (Figures 4B and 4C) exhibit two tan delta peaks, which is 

indicative of a possible phase separation that results in two distinct Tg values, as discussed 

earlier. The first peak is very obvious and occurs at temperatures lower than 50 ˚C, whereas 

the second transition is less obvious and occurs at higher temperatures. When comparing 

composites made with the same vegetable oil (Figures 4A and 4C, for example), sharper tan 

delta peaks are obtained when MA is not a part of the formulation. This result implies that 

although a better filler-resin interaction is obtained when MA is added to the resin, a more 
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heterogeneous matrix is formed. The difference in reactivity between the vegetable oil and 

the other co-monomers may result in an initially formed oil-poor phase containing anhydride 

units that can strongly interact with the filler particles. The interaction between MA and the 

rice hulls compromises the overall dispersion of growing polymer chains among the filler 

particles, resulting in a more heterogeneous polymer phase. 

 

 
Figure 4. Tan Delta curves of: (A) rice hull-reinforced composite with resin 

composition 50 wt % CLO, 20 wt % BMA, 15 wt % DVB, and 15 wt % MA; (B) rice hull-
reinforced composite with resin composition 50 wt % CSO, 20 wt % BMA, 15 wt % DVB, 
and 15 wt % MA; (C) rice hull-reinforced composite with resin composition 50 wt % CLO, 

35 wt % BMA, and 15 wt % DVB; (D) rice hull-reinforced composite with resin 
composition 50 wt % CSO, 35 wt % BMA, and 15 wt % DVB. 

 

Table IV presents the TGA and extraction data for composites containing CSO and 

CLO. Little variation was found for the T10 values of the composites listed in Table IV, with 
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a maximum T10 value of 306 ˚C for the CSO-containing composite without MA and a 

minimum of 301 ˚C for the CSO-containing composite with MA (entries 1 and 2 in Table 

IV). As discussed previously, this initial 10 wt % loss is related to initial degradation of the 

filler, and therefore, switching from CLO to CSO should have no effect on the T10 value. 

Table IV. TGA and Soxhlet extraction results for biocomposites made from conjugated 
linseed oil (CLO) and conjugated soybean oil (CSO). 

Entry Oil 
(50 wt %) 

BMA  
(wt %) 

DVB  
(wt %) 

MA  
(wt %) T10 (˚C) T50 (˚C) Tf (˚C) Solubles  

(wt %)a 
Insolubles  

(wt %)a 

1 CSO 35 15 - 306 405 592 4 96 

2 CSO 20 15 15 301 419 600 4 96 
3 CLO 35 15 - 304 426 606 5 95 
4 CLO 20 15 15 305 433 638 4 96 

aDetermined by Soxhlet extraction using CH2Cl2 for 24 hours. 
 

The T50 values, on the other hand, show a close relationship to the resin composition. 

There is an increase in the T50 value whenever MA is added to the resin. For CSO-

containing composites, the T50 value increases from 405 ˚C to 419 ˚C (entries 1 and 2 in 

Table IV), while the increase in CLO-containing composites occurs from 426 ˚C to 433 ˚C 

(entries 3 and 4 in Table IV). This behavior was previously attributed to the better filler-

resin interaction imparted by the presence of MA. When the T50 values of CSO- and CLO-

containing composites are compared, it becomes evident that CLO gives higher numbers. 

Indeed, there is an increase in the T50 value from 405 ˚C to 426 ˚C when CSO is substituted 

by CLO in MA-free composites (entries 1 and 3 in Table IV). Also, an increase from 419 ˚C 

to 433 ˚C in the T50 value is seen when CLO substitutes CSO in MA-containing composites 

(entries 2 and 4 in Table IV). As mentioned earlier, CLO is expected to give a resin with a 
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higher crosslink density than CSO, which would account for the higher temperatures 

required to attain 50 wt % degradation. 

The Tf values for the samples listed in Table IV exhibit a very similar trend to the T50 

values. An increase in the Tf  value was detected whenever MA is added to the resin (from 

592 ˚C to 600 ˚C for the CSO-containing composites and from 606 ˚C to 638 ˚C for the 

CLO-containing composites, entries 1 and 2, and 3 and 4 in Table IV). Also, an increase in 

Tf is observed when CSO is replaced by CLO (from 592 ˚C to 606 ˚C for the MA-free 

composites and from 600 ˚C to 638 ˚C for the MA-containing samples; entries 1 and 3, and 

2 and 4 in Table IV). 

The percentage of solubles determined by Soxhlet extraction of the composites 

doesn't reveal much, since only a minimal variation was detected. All samples analyzed 

afforded 4-5 wt % of soluble material (Table IV), thus showing that the amount of material 

retained in the composite after extraction is not strongly dependent on the resin composition 

variations introduced here. The Soxhlet extraction results reflect how much of the monomers 

have been incorporated into the matrix. In fact, both CSO and CLO can crosslink, to 

different degrees, through their multiple carbon-carbon double bonds. So no significant 

variations in the extraction results were expected among the samples shown in Table IV. 

From the 1H NMR spectra of the extracts of selected samples, it can be clearly seen that the 

soluble content recovered from the composites (Figures 5A and 5C) resembles the unreacted 

CLO and CSO (Figures 5B and 5D, respectively). The methylene hydrogen peaks between 

4.0 ppm and 4.5 ppm in Figures 5A and 5B confirm the presence of a triglyceride unit in the 

extract. The absence of other distinctive peaks in the spectra indicates that, with the 
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exception of the conjugated oil, all the other co-monomers are fully incorporated into the 

cured resin. 

 

 
Figure 5. 1H NMR spectra of: (A) extract of a rice hull biocomposite with resin composition 
50 wt % CLO, 35 wt % BMA, and 15 wt % DVB; (B) conjugated linseed oil; (C) extract of 

a rice hull biocomposite with resin composition 50 wt % CSO, 20 wt % BMA, 15 wt % 
DVB, and 15 wt % MA; (D) conjugated soybean oil. 

 

Conclusions 

Rice hull-reinforced composites have been prepared by the free radical 

polymerization of resins with different compositions. The resins used had a constant 

conjugated vegetable oil (CLO or CSO) content of 50 wt % and a variable amount of BMA, 

DVB, and MA. The pressure, cure sequence, filler load and particle size were kept constant.  

Tensile tests, DMA, and TGA experiments showed an overall improvement in the 
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composites' properties whenever MA was added as a co-monomer in the resin. MA acts as a 

compatibilizer between the filler particles and the matrix. These results have been 

corroborated by SEM images showing a better filler-resin interaction in composites where 

the matrix contains MA. A comparison between CSO and CLO as the major resin 

component showed that composites made from CLO exhibited better overall properties than 

those made with CSO. The Soxhlet extraction experiments, along with the 1H NMR spectra 

of the extracts, demonstrate that most of the monomers used were fully incorporated into the 

cured resin, with the exception of the conjugated oils. 
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Abstract 

Composites consisting of a conjugated linseed or soybean oil-based thermoset 

reinforced with wood flour and wood fibers have been prepared by free radical 

polymerization. The thermoset resin consists of a copolymer of conjugated linseed oil (CLO) 

or conjugated soybean oil (CSO), n-butyl methacrylate (BMA), divinylbenzene (DVB), and 

maleic anhydride (MA). The composites were cured at 180 ˚C and 600 psi and post-cured for 

two hours at 200 ˚C under atmospheric pressure. The effect of varying filler load, time of 

cure, filler particle size, origin of the fillers, and resin composition has been assessed by 

means of tensile tests, DMA, TGA, Soxhlet extraction followed by 1H NMR spectroscopic 

analysis of the extracts, and DSC. The best processing conditions have been established for 

the pine wood flour composites. It has been observed that the addition of MA to the resin 

composition improves the filler-resin interaction. 
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Introduction 

With the current desire to find replacements for petroleum-derived chemicals and 

materials, several bio-based resin systems have been developed in the past few years.1-15 

These biopolymers consist of linseed and soybean oil-based resins,1-8 polyurethanes,1,2 

polyester amides,3 multicomponent thermosets,4-7 and cyanate esters.8 Some of these systems 

have been reinforced with inorganic fillers, such as nanoclays,9,10 and glass fibers.11,12 

Another approach, adopted by several authors, for the preparation of “green” composites, is 

the reinforcement of standard petroleum-derived thermoplastics with a variety of natural 

fillers.13-19 Only recently, some progress on the reinforcement of blends of petroleum-derived 

unsaturated epoxy resins and 10 wt % of epoxidized soybean oil with natural fillers has been 

reported.20 

The Larock group at Iowa State University has focused its initial efforts in the study 

of bio-based thermosets on high natural oil content (~40-60 wt %) materials.21-24 The cationic 

co-polymerization of modified vegetable oils and other vinylic comonomers results in 

homogeneous bio-based materials with a smooth surface.25 Due to the problems associated 

with the cure of vegetable oil-based systems in the presence of free radical initiators, such as 

the entrapment of bubbles in the resin and crack formation, free radical resins received little 

attention in the early stages of our research.26 The thermal copolymerization of such systems 

has also been investigated, but the process is not considered to be practical due to the high 

temperatures and long times required in order to obtain viable materials.27 

More recently, in an attempt to improve the mechanical properties of the 

aforementioned bio-based polymers, the Larock group has used inorganic28,29 and natural 
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fillers as reinforcements for the preparation of “green” composites.30-34 The natural filler-

reinforced composites contain up to 85 wt % of bio-based materials, including the resin and 

the filler.30-34 In the preparation of such materials, it has been demonstrated that free radical 

initiators are quite effective in crosslinking the carbon-carbon double bonds in the oils and 

the other monomers used. The presence of ligno-cellulosic filler particles minimizes 

shrinkage of the resin and only minimal micro-cracks have been detected by scanning 

electron microscopy (SEM) of soybean hull composites.31 Recent results from the study of 

natural filler-reinforced composites in the Larock group suggested that maleic anhydride 

(MA) can serve as a good filler-resin compatibilizer and help improve the stress transfer from 

the matrix to the reinforcement, resulting in an overall increase of the mechanical 

properties.33,34 

With an estimated annual production of 21.2 billion pounds in 2007,35 soybean oil is 

one of the most prevalent vegetable oils in the United States. Soybean oil consists of a 

triglyceride with a fatty acid composition of 11% palmitic acid, 3% stearic acid, 22% oleic 

acid, 55% linoleic acid, and 9% linolenic acid.36 The total average number of carbon-carbon 

double bonds per triglyceride in soybean oil is 4.5.37 When these carbon-carbon double 

bonds are isomerized and brought into conjugation using methodology developed by the 

Larock group and widely used by us,38 soybean oil can readily polymerize and crosslink in a 

free radical process to form a rigid thermoset. With a similar fatty acid composition (4% 

stearic acid, 19% oleic acid, 15% linoleic acid, 57% linolenic acid, and 5% of other fatty 

acids), but a higher degree of unsaturation (6.0 carbon-carbon double bonds per triglyceride), 

linseed oil is also a potential bio-based monomer for the preparation of “green” composites.23 
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The use of wood flour and wood fibers as reinforcements in the preparation of 

“green” composites is known.13,15 However, in most cases, petroleum-derived thermoplastics 

have been used as the matrix.13,15 Here, we report the preparation of soybean and linseed oil-

based thermosets reinforced with pine, oak, and maple wood flours and a mixture of 

hardwood fibers. Parameters, such as cure time, filler load, filler particle size, origin of the 

filler, and resin composition, have been varied and the resulting properties of the “green” 

composites have been assessed by differential scanning calorimetry (DSC), 

thermogravimetric analysis (TGA), tensile tests, dynamic mechanical analysis (DMA), and 

Soxhlet extraction followed by proton nuclear magnetic resonance (1H NMR) spectroscopic 

analysis of the extracts. After analysis of the results, optimal conditions have been suggested 

for the preparation of such composites, and the effect of MA as a filler-resin compatibilizer 

has been verified. 

Experimental 

Materials. n-Butyl methacrylate (BMA) was purchased from Alfa Aesar (Ward Hill, MA). 

DVB, MA and t-butyl peroxide (TBPO) were purchased from Sigma-Aldrich (St. Louis, 

MO). All were used as received. Soybean oil (Great Value brand – Bentonville, AR) was 

purchased in a local grocery store, and Superb linseed oil was provided by ADM (Red Wing, 

MN). The carbon-carbon double bonds in both oils have been isomerized and brought into 

conjugation using a rhodium catalyst, following a method developed and frequently used by 

our group.38 The products contain conjugated carbon-carbon double bonds, like in a 1,3-

diene, and will be referred to in the text as conjugated oils. The wood flours of different 

particle sizes and wood fibers were provided by American Wood Fibers (Schofield, WI). The 
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fillers were dried overnight at 70 ˚C in a vacuum oven right before impregnation with the 

resin to improve filler-resin compatibility.  

General procedure for preparation of the composites. Wood flour composites. The crude 

resin was obtained by mixing the conjugated vegetable oil, BMA and DVB in a beaker. MA 

was melted in a hot water bath and quickly added to the crude resin mixture under agitation, 

along with the free radical initiator TBPO. The natural fillers were manually mixed with the 

crude resin in a large beaker using a spatula, resulting in thorough impregnation of the fillers. 

The impregnated fillers were then transferred to a 6” x 6” mold, and compression molded at 

180 ˚C and 600 psi. The composites were removed from the mold and post-cured in a 

convection oven for 2 hours at 200 ˚C at ambient pressure. In all composites produced, the 

resin has a conjugated vegetable oil content of 50 wt % and the optimum amount of TBPO 

has been determined to be, in preliminary tests, an extra 5 wt % of the total resin weight. The 

amounts of DVB, BMA and MA have been varied, as indicated in the text, to produce 

composites of various compositions.  

Wood fiber composites. Due to the very low density of the wood fibers, and the difficulties 

associated with handling that material, only one composite has been prepared using mixed 

hardwood fibers, which exhibit a wide variation in the aspect ratio, as reinforcement. The 

aspect ratio of the mixed wood fibers has not been determined by us, and the fibers have been 

used as received. Following the same procedure described for the preparation of the wood 

flour composites, the wood fibers were impregnated with a resin containing 50 wt % of 

conjugated linseed oil (CLO), 35 wt % of BMA, 15 wt % of DVB, and an extra 5 wt % of the 

total resin weight of TBPO. The final filler to resin ratio obtained was 50/50. The mixture 
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was compression molded at 130 ˚C and 400 psi for 5 hours, and post-cured in a convection 

oven at 150 ˚C for 2 hours at ambient pressure. For comparison purposes, a pine wood flour 

(particle size diameter <310 µm) composite was prepared using the same parameters. 

Characterization of the composites. Tensile tests were conducted at room temperature 

according to ASTM D-638 using an Instron universal testing machine (model 5569) 

equipped with a video extensometer and operating at a crosshead speed of 2.0 mm/min. Dog 

bone-shaped test specimens were machined from the original samples to give the following 

gauge dimensions: 57.0 mm x 12.7 mm x 4.5 mm (length x width x thickness, respectively). 

For each composite, seven dog bones were cut and tested. The results presented in the text 

are the average of these measurements along with the calculated standard deviation. 

DMA experiments were conducted on a Q800 DMA (TA Instruments, New Castle, 

DE) using a three point bending mode with a 10.0 mm clamp. Rectangular specimens of 22.0 

mm x 8.5 mm x 1.5 mm (length x width x thickness, respectively) were cut from the original 

samples. Each specimen was cooled to -60 ˚C and then heated at 3 ˚C/min to 250 ˚C. The 

experiment was conducted using a frequency of 1 Hz and an amplitude of 14 µm under air. 

Two runs for each sample were carried out and the results presented in the text reflect the 

average of the two measurements. 

Soxhlet extraction was conducted to determine the amount of soluble materials in the 

composites. A 2.0 g sample of each composite was extracted for 24 h with dichloromethane 

(CH2Cl2). After extraction, the solubles were recovered by evaporating the CH2Cl2 under 

vacuum. Both soluble and insoluble materials were dried overnight at 70 ˚C. The dried 

soluble fraction was then dissolved in deuterated chloroform (CDCl3) and the 1H NMR 
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spectrum was obtained using a Varian Unity spectrometer (Varian Associates, Palo Alto, 

CA) operating at 300 MHz. The 1H NMR spectra helped to identify the solubles in each 

sample. 

A Q50 TGA instrument (TA Instruments, New Castle, DE) was used to measure the 

weight loss of the samples under an air atmosphere. The samples (~10 mg) were heated from 

room temperature to 650 ˚C at a rate of 20 ˚C/min.  

DSC experiments were performed on a Q20 DSC instrument (TA Instruments, New 

Castle, DE) under a N2 atmosphere over a temperature range of -20 ˚C to 400 ˚C, while 

heating at a rate of 20 ˚C/min. The samples weighed ~10 mg. 

Results and Discussion 

Filler load evaluation. In order to determine the optimal filler to resin ratio for the 

preparation of wood flour composites, samples containing 60-85 wt % of pine wood flour 

have been prepared and their mechanical properties have been measured by tensile tests and 

DMA. Table I summarizes the results obtained for composites with a constant resin 

composition equal to 50 wt % of conjugated soybean oil (CSO), 35 wt % of BMA, and 15 wt 

% of DVB. The pine flour particle size diameter was also held constant at <310 µm. The 

composites have been cured at 180 ˚C and 600 psi for 5 hours, followed by a post-cure step 

at 200 ˚C and ambient pressure for 2 hours. 

From the tensile test results presented in Table I, one can see an overall increase in 

both the Young's modulus and the tensile strength of the composites with increasing filler 

loads. The increase in the tensile properties is clearer for filler loads comprised between 60 
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Table I. Tensile tests, DMA, and extraction results for pine wood flour composites with 
varying filler loads 

Filler Load 
(wt %)a E (GPa) 

Tensile 
Strength 

(MPa) 

E' at 130 ˚C 
(MPa) 

Tg1 
(˚C) 

Tg2 
(˚C) 

Soluble 
Fraction 

(%)b 
-c - - 44 -51 37 13 
60 1.5 ± 0.1 9.1 ± 1.0 739 1 75 8 
70 1.8 ± 0.1 9.5 ± 2.0 946 -4 78 8 
75 2.8 ± 0.9 9.5 ± 1.6 1033 -3 85 9 
80 2.8 ± 0.9 11.7 ± 2.4 1072 4 79 5 
85 3.3 ± 0.4 10.5 ± 0.7 1026 7 61 4 

a Filler particle size diameter <310 µm. Cure conditions: 180 ˚C and 600 psi for 5 hours, 
followed by a post-cure step at 200 ˚C and ambient pressure for 2 hours. 
b Determined by Soxhlet extraction. 
c Unreinforced resin containing 50 wt % of CSO, 35 wt % of BMA, and 15 wt % of DVB 

 

wt % and 75 wt %. Beyond that point, the differences in Young's modulus fall within the 

standard deviation associated with the measurements. Although a high value of 3.3 GPa is 

observed for the sample containing 85 wt % of pine wood flour, there is no statistical 

difference between the samples. The same situation is observed for the tensile strength of 

samples containing 80 wt % and 85 wt % of filler. In this case, the strength peaks at 11.7 

MPa, for the sample prepared with 80 wt % of pine flour, but the difference with respect to 

the sample containing 85 wt % of pine flour falls within the standard deviation of the two 

measurements. 

When the flexural properties of samples prepared with varying amounts of pine flour 

are compared, a clear increase in the storage modulus at 130 ˚C (well above the detected Tg's) 

is observed when the filler load is increased from 60 wt % to 80 wt %. This increase reflects 

the reinforcement imparted by the filler, which is a consequence of the stress transfer from 
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the matrix to the filler particles, avoiding dissipation of the energy in polymer chain motions 

and therefore yielding a higher storage modulus. An even higher effect is obtained when 

comparing the unreinforced resin and the sample containing 60 wt % of the filler. In that 

case, there is approximately a 17 fold improvement in the storage modulus! Nevertheless, as 

noted in our previous work with soybean and rice hulls,31,33 when the filler load is 

exceedingly high (85 wt %, Table I), the amount of resin in the system isn't enough to bind 

all of the filler particles, leading to filler agglomeration and formation of weak points in the 

composite morphology that negatively impact the storage modulus. 

Another interesting observation from the flexural tests is the presence of two distinct 

Tg's for the systems presented in Table I. This phenomenon has been observed and analyzed 

previously by us and is attributed to a phase separation of the resin due to the very distinct 

reactivity of the co-monomers towards free radicals, most noticeably CSO and DVB.31,33 

The soluble content recovered after Soxhlet extraction of the composites bearing 

different filler loads is also presented in Table I. The soluble content of the pure resin 

corresponds to 13 wt %, and it has been identified as being mainly unreacted CSO.31 Indeed, 

the 1H NMR spectrum of the resin extract (Figure 1B) matches very closely that of pure CSO 

(Figure 1A), except for small peaks at 4.0 ppm and 7.0 ppm in the spectrum of the resin 

extract. Those peaks are most likely related to either residual unreacted BMA and DVB 

respectively or to non-crosslinked oligomers containing those units. Some differences in the 

pattern of the 1.9-2.2 ppm signal are also observed when comparing Figures 1A and 1B. 

Those differences are possibly related to the presence of BMA, DVB, and/or non-crosslinked 

oligomers in the extract of the resin. It is, however, extremely hard to attribute the observed 
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differences in that range to specific components of the system due to the extensive overlap of 

signals related to aliphatic protons of the various resin components. 

 

 
Figure 1. 1H NMR spectra of (A) conjugated soybean oil (CSO), (B) extract of a resin 

containing 50 wt % of CSO, 35 wt % of BMA, and 15 wt % of DVB, (C) extract of a pine 
wood flour composite containing an 80/20 filler to resin ratio and cured for 4 hours, (D) 

extract of pine wood flour. 
 

Pine wood flour only yields 9 wt % of an unidentified soluble material (result not 

shown in Table I). Thus, it is expected that an increase in the filler content will result in a 

decrease of the recovered solubles after Soxhlet extraction as is observed in Table I. The 

material extracted from the wood flour is rich in carbon-hydrogen bonds as evidenced by the 

peaks in the 0.8-2.5 ppm range (Figure 1D) with the possibility of the presence of carbon-

carbon double bonds and/or oxygenated functional groups evident from the small peaks 
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located at 3.7 ppm and 5.3 ppm. Since this material has not been identified yet, it is 

impossible to predict what role it plays in the system studied. When analyzing the spectrum 

of a composite extract (Figure 1C), it is possible to identify most of the features found in the 

spectrum of the resin extract, confirming that the majority of what is extracted comes from 

the matrix and is most likely unreacted CSO and trace amounts of the other comonomers. 

The intensity of the solvent peak (7.26 ppm) indicates how concentrated the solutions used to 

obtain the corresponding spectra were. It is noteworthy that only a very small amount of 

extract has been recovered from samples C and D, resulting in more dilute samples and more 

intense solvent peaks. 

The thermal stability of the wood flour composites can be assessed by a comparison 

of the TGA curves of some selected samples shown in Figure 2. Due to the high filler load 

present in the composites (70 wt % and 80 wt %, Figures 2C and 2D, respectively), their 

thermal degradation profile more closely resembles that of the pure pine wood flour (Figure 

2B) rather than the resin (Figure 2A). After the initial loss of water by the filler particles 

(around 100 ˚C, Figure 2), the composites and the pure filler start to degrade at 

approximately 225 ˚C, whereas the pure resin only starts degrading at approximately 275 ˚C. 

Thus, the fillers are less thermally stable than the resin. 

It is interesting to note that despite the higher thermal stability of the resin system, the 

composites degrade slightly faster than the pure filler. This is confirmed by the first peak of 

the DTA curves (Tmax1). While the pure filler exhibits a Tmax1 of 348 ˚C, samples C and D 

exhibit a Tmax1 of 334 ˚C and 329 ˚C, respectively. This first degradation peak can be  
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Figure 2. TGA and DTA curves of (A) an unreinforced resin with the following 

composition: 50 wt % of CSO, 35 wt % of BMA, and 15 wt % of DVB; (B) pine wood flour; 
(C) a composite containing 70 wt % of pine wood flour (particle size diameter <310 µm) and 
30 wt % of resin A; and (D) a composite containing 80 wt % of pine wood flour (particle size 

diameter <310 µm) and 20 wt % of resin A. 

 

attributed to the hemicellulose component of the ligno-cellulosic materials.31,33 The negative 

effect that the resin has on the thermal stability of the wood flour differs from our earlier data 

using soybean and rice hulls as reinforcements,31,33 and is not yet fully understood. The other 

DTA peaks observed for samples B, C, and D are, most likely, a combination of the 

degradation of cellulose, lignin, and some of the resin components. The degradation pattern 

of the resin is more complex and it is hard to attribute the DTA peaks for sample A (Figure 

2) to specific components of the system. Nevertheless, it is noteworthy that  Tmax1 occurs at 
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approximately 445 ˚C for the pure resin, a much higher temperature than that observed for 

the composites or the pure filler. 

Given the results presented so far for composites made with different amounts of 

filler, an 80/20 filler to resin ratio yields a composite with the overall best mechanical 

properties. Furthermore, despite the statistical equivalence of the tensile properties of 

samples containing 80 wt % and 85 wt % of wood flour, and taking into account the 

processability of the crude resin and wood flour mixture, the 80/20 filler to resin ratio proved 

to be the most practical one to handle prior to curing. Therefore, this filler load has been used 

in the preparation of all composites in the remainder of this work. 

Cure time analysis. To determine the best cure time for the system, pine wood flour 

composites with a constant filler to resin ratio of 80/20, and a constant resin composition (50 

wt % of CSO, 35 wt % of BMA, and 15 wt % of DVB) have been prepared and cured at 600 

psi and 180 ˚C for different times. The results from the tensile tests, DMA, and Soxhlet 

extraction are presented in Table II. 

When the cure time is varied from 30 minutes to 3 hours, there is no significant 

variation in the Young's modulus of the pine wood flour composites as the differences 

between the values fall within the standard deviations of the measurements. The Young's 

modulus reaches its maximum at 4.3 GPa when the composite is cured for 4 hours, but once 

again, no statistical differences have been found between the samples cured for 4 and 5 

hours. For the tensile strength, with the exception of the sample cured for 30 minutes, all of 

the other composites exhibit values that range within the standard deviations of the  
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Table II. Tensile tests, DMA, and extraction results for pine wood flour composites cured at 
180 ˚C and 600 psi for different times, and post-cured at 200 ˚C for 2 hours at ambient 

pressure 

Cure Time 
(h)a E (GPa) 

Tensile 
Strength 

(MPa) 

E' at 130 ˚C 
(MPa) 

Tg1 
(˚C) 

Tg2 
(˚C) 

Soluble 
Fraction 

(%)b 
5 2.8 ± 0.9 11.7 ± 2.4 1072 4 79 5 
4 4.3 ± 1.1 12.4 ± 1.1 742 3 93 4 
3 3.1 ± 0.6 12.3 ± 1.9 704 -2 77 6 
2 3.3 ± 0.7 13.9 ± 1.6 831 2 90 5 
1 3.5 ± 0.9 13.0 ± 0.9 1292 -1 71 5 

0.5 3.1 ± 0.6 11.4 ± 1.2 864 -7 97 5 
a Filler particle size diameter <310 µm. Filler/resin ratio = 80/20. 
b Determined by Soxhlet extraction. 

 

measurements. These results indicate that although very little variation is obtained in the 

tensile properties by varying the cure time, a 30 minute cure is inappropriate due to the very 

low tensile strength obtained. This is probably because the resin is not completely cured after 

such a short time. On the other hand, a 4 hour cure sequence results in the stiffest material 

and is therefore considered the optimum cure time for the preparation of wood flour 

composites. 

With respect to the storage modulus at 130 ˚C, there is no obvious trend between the 

values observed and the cure time. A maximum storage modulus is observed when the 

composite is cured for one hour. However, the results suggest a tendency for E' to increase 

with cure time for cure sequences lasting between three and five hours. 

During curing, two competing phenomena are responsible for the minor variation in 

the mechanical properties measured as a function of the cure time. Indeed, one would expect 

the tensile and flexural properties to improve significantly with cure time as the crosslink 
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density of the resin increases and further reactions of the comonomers are expected to yield 

stiffer and stronger materials. Furthermore, it has been shown that the post-cure step is 

essential for achieving a fully crosslinked resin.33 This finding supports the claim that 

samples submitted to the same post-cure conditions exhibit a similar crosslink density, and 

similar properties as a consequence. However, degradation of the filler components starts at 

fairly low temperatures (see Figure 3), and the loss of properties due to partial filler 

degradation under the cure conditions is a possibility. With both phenomena occurring 

simultaneously, one effect compensates for the other and this is reflected in the overall 

measurements, as can be seen in Table II. 

It has been previously shown, with rice hull composites cured at different 

temperatures, that a cure temperature of 180 ˚C maximizes the crosslinking of the resin, 

resulting in materials with better properties.33 A cure temperature of 130 ˚C has been 

employed in the preparation of a wood flour composite, resulting in a sample with 

significantly lower properties than the one cured at 180 ˚C (compare the results presented in 

Tables I and IV). 

Once again, two distinct Tg's have been observed for the wood flour composites 

prepared with CSO (Table II). As discussed earlier, this is a result of a phase separation due 

to the difference in reactivity of the comonomers that form the matrix of the composites. The 

lower Tg, most likely associated with a CSO-rich phase, varied from -7 ˚C to 4 ˚C in a non-

regular pattern, as the cure time increased from 30 minutes to 5 hours. The higher Tg, most 

likely related to a DVB-rich phase, shows a broader variation from 71 ˚C to 97 ˚C within the 

same cure time range. These results show that the phase separation doesn't depend on the 
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cure time and that the DVB-rich phase is readily formed at the cure temperature (180 ˚C), 

even when the cure only lasts for 30 minutes. Once the DVB-rich phase is formed and the 

concentration of free DVB monomer has dropped, the CSO-rich phase starts to form. 

Surprisingly, the change in soluble material with cure time is minimal, which suggests that 

both phases are mostly formed within the first 30 minutes of the cure, and that only a small 

amount of the monomers are left unreacted. For the remainder of the time, during longer cure 

sequences, processes such as crosslinking, polymer chain growth, and oligomer incorporation 

into the matrix occur, resulting in materials with slightly better mechanical properties.  

Another evidence of the effect of the cure time on the composites is shown in Figure 

3, where the DSC plots of composites cured for different times are pictured. Composites 

cured for 3 and 4 hours have been omitted due to their similarity to the composite cured at 2 

hours and to achieve better quality plots. 

As discussed in our previous publication on soybean hull composites,31 the 

exothermic peaks occurring after 250 ˚C in the DSC of ligno-cellulosic composites 

correspond to the decomposition of hemicellulose and cellulose from the filler. Since the 

composition of the materials is the same for all four samples shown in Figure 3, no 

significant variation is detected between 250 ˚C and 400 ˚C. The sharp heat absorption 

observed between 150 ˚C and 200 ˚C for samples cured between 30 minutes and 2 hours is 

attributed to volatilization of compounds during hemicellulose thermal degradation, as 

previously demonstrated with soybean hull composites.31 This peak occurs at 190 ˚C for 

samples cured for 30 minutes and 2 hours. It is unclear to us why a lower temperature was 

obtained for the composite cured for 1 hour. However, the main focus of the present  
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Figure 3. DSC of composites cured at 180 ˚C and 600 psi for different times, and post-cured 
at 200 ˚C and ambient pressure for 2 hours. The composites have a filler/resin ratio of 80/20, 

and a resin composition of 50 wt % of CSO, 35 wt % of BMA, and 15 wt % of DVB. 

 

discussion is the change in the resin using different cure sequences. Regarding the DSC of 

the composite cured for 5 hours, the endothermic peak is much less intense, and appeared at a 

considerably lower temperature (135 ˚C). This is an indication that the exceedingly long cure 

time initiated the thermal degradation of the filler, and, therefore, less energy was required 

during volatilization of the compounds in the DSC experiment. 

The most important feature of the DSC curves shown in Figure 3 is a change in the 

baseline occurring right before the heat absorption. This feature is clearly seen at 160 ˚C for 

the composite cured for 30 minutes, and is most likely related to further cure of the resin, as 

discussed for soybean hull composites.31 The same feature, although much less intense is 
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observed, at the same temperature, for the composite cured for 1 hour, indicating that a 

longer cure time indeed results in a more complete cure of the resin. For the composite cured 

for 2 hours, the change in the baseline is much smoother and actually hard to detect, 

corroborating the idea that a longer heating time results in further cure of the resin. The 

aforementioned feature is completely nonexistent in the DSC of the composite cured for 5 

hours. In fact, in this instance, the resin is completely cured, but the filler is significantly 

degraded, and a burnt smell has been noticed when removing the composite from the mold 

after preparation. 

Filler particle size, filler origin, and resin composition effects. Table III shows the 

properties of composites made with different wood flours containing varying particle sizes 

and resin compositions. Comparing the properties of composites made with pine wood flour 

of different particle sizes (entries 1-3, Table III), it is evident that the overall best values have 

been obtained from the composite prepared with particles <310 µm (entry 2, Table III). The 

only exception being the storage modulus at 130 ˚C, for which the composite prepared with 

filler particles <470 µm (entry 1, Table III) exhibited the highest value. We have observed 

previously with soybean hulls that the use of fillers of smaller particle sizes tends to result in 

a better dispersion of the resin and higher mechanical properties.31 Larger particles, on the 

contrary, agglomerate more easily, forming weak points in the composite.31 Here, probably 

due to a difference in the filler structure and composition (grain shell versus ground wood), a 

different trend is observed. The optimum intermediate particle size (<310 µm) most likely 

prevents agglomeration of the filler. This trend changed when maple/oak composites were 

prepared with a resin that contains the compatibilizer MA (entries 7-9, Table III). In that 

case, the expected trend of smaller particle sizes (<224 µm) yielding composites with better 
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properties is verified. Once again the exception being the storage modulus at 130 ˚C, for 

which the highest value is observed for the composite prepared with particles <310 µm (entry 

8, Table III). 

 
Table III. Filler particle size, filler origin, and resin composition effects on the properties of 

wood flour reinforced composites. 

Entry Filler Resin 
Compositiona 

Particle 
size 

(µm) 

E 
(GPa) 

Tensile 
Strength 

(MPa) 

Tg1 
(˚C) 

Tg2 
(˚C) 

E' at 
130 ˚C 
(MPa) 

1 pine flour CSO-DVB-
BMA35 

<470 3.2 ± 
0.6 

8.3 ± 0.8 2 69 879 

2 pine flour CSO-DVB-
BMA35 

<310 4.3 ± 
1.1 

12.4 ± 1.1 3 93 742 

3 pine flour CSO-DVB-
BMA35 

<224 2.7 ± 
0.7 

9.9 ± 0.7 -1 72 686 

4 pine/maple 
flour 

CSO-DVB-
BMA35 

- 1.6 ± 
0.1 

7.5 ± 1.0 -8 70 388 

5 pine flour CLO-DVB-
BMA35 

<310 3.8 ± 
1.9 

15.7 ± 1.9 - 54 1559 

6 pine flour CLO-DVB-
BMA20-
MA15 

<310 4.0 ± 
0.9 

17.6 ± 1.9 17 109 2244 

7 maple/oak 
flour 

CLO-DVB-
BMA20-
MA15 

<470 2.1 ± 
0.4 

8.5 ± 2.5 11 91 600 

8 maple/oak 
flour 

CLO-DVB-
BMA20-
MA15 

<310 1.8 ± 
0.3 

8.1 ± 2.2 -12 62 2223 

9 maple/oak 
flour 

CLO-DVB-
BMA20-
MA15 

<224 2.5 ± 
0.5 

11.3 ± 2.3 -9 59 1064 

a All resins have 50 wt % of conjugated vegetable oil, and 15 wt % of DVB. The wt 
percentage of BMA and MA is indicated by the numbers following the corresponding 
acronyms. 
 

Another interesting aspect from Table III is that the use of mixed wood flours gives 

worse properties than when a pure wood flour is used in the preparation of the composite. 

This is true for the pine/maple mixed flour (entry 4, Table III), when compared with the pure 
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pine flour (entries 1-3, Table III). One reason for the observed pattern is that the maple flour 

originally used to prepare the mixture appears to have very low mechanical properties. 

Unfortunately, we could not get samples of pure maple flour to prepare a control composite 

and test that hypothesis. A similar situation is observed for composites made with maple/oak 

mixed flours (entries 7-9, Table III). Although the mechanical properties measured for the 

maple/oak composite (entry 8, Table III) are overall lower than the ones measured for the 

pine wood flour composite with the same resin composition and particle size (entry 6, Table 

III), no controls have been prepared with pure oak, and/or pure maple wood flours. 

When CSO is replaced by CLO in pine flour composites (entries 2 and 5, Table III), a 

significant improvement in tensile strength and storage modulus at 130 ˚C is observed. These 

results support the idea that a higher number of carbon-carbon double bonds in the oil 

(linseed oil has on average 6.0 carbon-carbon double bonds per triglyceride, while soybean 

oil only possesses 4.5 carbon-carbon double bonds per triglyceride) gives a more crosslinked 

and stronger material. A similar trend has been observed and recently published by us for 

soybean and linseed oil-based rice hull composites.34 As for the Young's modulus of the 

CSO- and CLO-based composites compared here (entries 2 and 5, Table III), the values 

measured fall within the standard deviation of the method used and therefore can't be 

considered statistically different. The appearance of one single Tg for the CLO-containing 

composite (entry 5, Table III) is again a result of the higher reactivity of CLO in comparison 

to CSO, due to its higher number of carbon-carbon double bonds. By reacting faster, CLO is 

incorporated into the polymer matrix at approximately the same rate as the other 

comonomers, resulting in a single phase. 
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When maleic anhydride (MA) is added to the resin formulation, it acts as a 

compatibilizer between the hydrophobic matrix and the hydrophilic filler. MA can also be 

polymerized through a standard free radical reaction of its reactive carbon-carbon double 

bond, which allows it to be easily incorporated into the polymer matrix. It is also known that 

the anhydride unit can be easily opened in the presence of nucleophiles at elevated 

temperatures, which should allow the appended anhydride to interact with the ligno-

cellulosic fillers rich in carbohydrates. 

A comparison of entries 5 and 6 in Table III shows that the addition of MA to the 

resin formulation in partial replacement of BMA results in a slight improvement in the 

mechanical properties. Young's modulus and tensile strength are slightly higher for the MA-

containing sample, but the values still fall within the standard deviation of the measurements. 

The storage modulus measured at 130 ˚C, on the other hand, shows a significant 

improvement, increasing from 1559 MPa to 2244 MPa after the addition of MA, which 

supports better stress transfer from the resin to the reinforcement, and indicates that a better 

filler-resin interaction has been obtained with MA. 

Interestingly, the presence of MA in the resin system seems to have an influence on 

the Tg's observed and the corresponding phase separation. Two distinct Tg's have been found 

for a pine flour composite containing MA (entry 6, Table III), even when CLO is used as the 

major resin component. The same phase separation is observed in all maple/oak composites 

(entries 7-9, Table III). A plausible explanation for this phenomenon is that when the 

polymer chains containing MA units start to form, the favorable interactions between MA 

and the filler restrict the movement and the dispersion of the growing chains, which 
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ultimately results in the observed phase separation, regardless of the reactivity of the oil used 

to prepare the resin. A comparison of the tan delta curves of pine flour composites prepared 

with and without MA is presented in Figure 4. 

 

 

Figure 4. Tan delta curves of pine flour composites with resin composition: 50 wt % CLO, 
35 wt % BMA, and 15 wt % DVB (A); and 50 wt % CLO, 20 wt % BMA, 15 wt % DVB, 

and 15 wt % MA (B). Both composites had a filler/resin ratio of 80/20 and have been cured 
for 4 hours at 180 ˚C and 600 psi, and post-cured at 200 ˚C for 2 hours at ambient pressure. 

 

Wood fiber composites. For comparison purposes, samples containing mixed hardwood 

fibers and pine wood flour have been prepared with the same filler/resin ratio and resin 

composition. The resin was composed of 50 wt % of CLO, 35 wt % of BMA, and 15 wt % of 

DVB and the filler/resin ratio used was 50/50. As mentioned earlier, a cure sequence of 5 

hours at 130 ˚C and 400 psi, followed by a post-cure step of 2 hours at 150 ˚C and ambient 
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pressure, was used for both composites. The properties of both samples are summarized in 

Table IV. 

 
Table IV – Properties of pine flour and hardwood fiber composites. 

Entry Filler E (GPa) 
Tensile 

Strength 
(MPa) 

Tg (˚C) E' at 130 ˚C 
(MPa) 

1a pine flour 1.3 ± 0.4 2.6 ± 0.6 62 152 

2a 
mixed 

hardwood 
fiber 

2.3 ± 0.2 18.4 ± 1.5 70 1051 

a Both composites have a 50/50 filler/resin ratio and a resin composition of 50 wt % of 
CLO, 35 wt % of BMA, and 15 wt % of DVB. The cure employed corresponds to 130 ˚C 
for 5 hours at 400 psi, followed by a post-cure of 2 hours at 150 ˚C and atmospheric 
pressure. 
 

From the results presented in Table IV, the use of hardwood fiber as a reinforcement 

resulted in a composite with much higher mechanical properties than the composite 

reinforced with pine wood flour. The Young's modulus increased from 1.3 GPa to 2.3 GPa, 

while the tensile strength and storage modulus at 130 ˚C showed a 7 fold improvement. This 

increase in mechanical properties is most likely related to the higher aspect ratio and fibrous 

nature of the wood fibers in comparison to wood flours, where the particles exhibit a more 

spherical geometry. Also noteworthy is the presence of only one Tg for both composites due 

to the use of CLO as the major resin component. 

Conclusions 

In this work, we have studied composite systems where the matrix is a free radical 

copolymer of BMA, DVB, and either conjugated soybean oil or linseed oil. These thermosets 

have been reinforced with pine, maple, and oak flours, and a mixture of hardwood fibers. 
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First, we evaluated different filler amounts for pine wood flour composites and determined 

that a filler load of 80 wt % was the most practical for the preparation of such composites. 

Then, we examined the effect of cure time on the final properties of the pine flour 

composites. The results indicate that little variation in the mechanical properties was 

obtained when the cure time varied from 30 minutes to 5 hours. TGA and DSC experiments 

indicated that this is a result of factors that compensate for each other. While longer cure 

times help to completely cure the resin and tend to increase crosslink density and monomer 

incorporation into the matrix, it is also responsible for partial thermal degradation of the filler 

components, which impacts the properties negatively. Optimum particle size has been shown 

to depend on the filler composition, and composites made with mixtures of flours containing 

oak have exhibited worse mechanical properties than pure pine flour composites. It has been 

verified that MA is a good filler-resin compatibilizer for the composites studied, because its 

presence imparts a significant increase in the storage modulus of the composites. Finally, a 

comparison between wood fiber and wood flour composites indicates that the composites 

reinforced with fibers show significantly higher mechanical properties. 
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Abstract 

 Sugar-cane bagasse composites have been prepared by the free radical polymerization 

of regular or modified vegetable oils with divinylbenzene and n-butyl methacrylate, in the 

presence of dried, ground sugar-cane bagasse. Various cure times and temperatures have 

been investigated to determine the optimum cure sequence for the new materials. The post-

cure time has also been varied and an ideal post-cure treatment of 1 hour at 180 ˚C at ambient 

pressure has given the best overall properties. The effect of varying the filler load and resin 

composition has been assessed by means of tensile tests, DMA, TGA, and Soxhlet extraction, 

followed by 1H NMR spectroscopic analysis of the extracts. It has been observed that the 

initial washing and drying of the filler influences the filler-resin interaction and impacts the 

final properties of the composites. 

Introduction 

 The partial replacement of petroleum-derived plastics and composites by novel bio-

based materials from inexpensive, renewable, natural resources, like vegetable oils and 

agricultural residues, has the potential to greatly impact the plastics and coatings industries. 

Such natural starting materials tend to be readily available in large quantities, at a low price, 
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and can possibly afford more bio-degradable materials than the virtually indestructible 

petroleum-based polymers. Furthermore, new bio-based materials may present properties not 

currently available in commercial petroleum products, with an overall intrinsic low toxicity. 

These characteristics make bio-based materials very appealing from an industrial point of 

view, and research in this area may lead to significant progress towards oil independence and 

sustainable industrial development. 

 Currently, a variety of chemicals and materials are prepared from vegetable oils, 

polysaccharides, wood, or proteins.1 As an example, bio-oil and syngas are obtained from the 

pyrolysis of wood and agricultural wastes.2 Soybean and corn proteins can be denatured and 

aligned to prepare protein-based bio-polymers,3,4 and vegetable oils find wide use in paints,5 

biocoatings,6,7 biofuels,8 and as building blocks for bio-based resins,9-17 such as 

polyurethanes,9-11 polyester amides,12 multicomponent thermosets,13-17 and cyanate esters.18 

Some of these systems have been reinforced with nanoclays,19 and glass fibers.20-22 

 Alternatively, “green” composites can be prepared by the reinforcement of standard 

petroleum-derived thermoplastics, like high density polyethylene (HDPE), with natural 

fillers, such as sugar-cane bagasse23 or wheat straw.24 Similarly, polypropylene (PP) has been 

reinforced with palm and coir fibers.25 There exist several other possible combinations of 

thermoplastics and natural fillers that are not explicitly cited here. More recently, some 

progress on the reinforcement of blends of petroleum-derived unsaturated epoxy resins and 

epoxidized soybean oil with hemp fibers has been reported.26 

 In an effort to incorporate high biorenewable content into polymer blends, the Larock 

group at Iowa State University has developed a variety of vegetable oil-based thermosets 
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with good thermal and mechanical properties.27-29 Cationic,27 free radical,28 and thermal29 co-

polymerization of regular and conjugated natural oils in the presence of various petroleum-

based co-monomers have yielded materials ranging from elastomers to rigid thermosets. The 

reactive sites in these vegetable oil-based systems are the carbon-carbon double bonds. 

Overall, the reactivity of the triglycerides towards the aforementioned polymerization 

processes can be significantly enhanced if the carbon-carbon double bonds in the fatty acid 

chains are isomerized and brought into conjugation.30 More recently, the synthesis of bio-

based polymers, making use of alternative polymerization methods, including ring-opening 

metathesis polymerization (ROMP),31 and acyclic diene metathesis (ADMET)32 has also 

been investigated. 

 The cationic polymerization of vegetable oils17,27 in the presence of petroleum-

derived co-monomers avoids the entrapment of bubbles in the resin, which are usually seen 

when AIBN is used as a free radical initiator. It also limits crack formation related to 

shrinkage of the resin upon cure. Significant improvements in the properties of bio-based 

polymers can be obtained by simply reinforcing these cationic vegetable oil-based matrices 

with inorganic21,22 or natural fillers.33 

 In the preparation of bio-based composites reinforced with spent germ,34 soybean 

hulls,35 corn stover,36 wheat straw,37 and rice hulls,38 it has been demonstrated that peroxide 

free radical initiators are effective in reacting the carbon-carbon double bonds in the oils and 

the other co-monomers used in the presence of lignocellulosic materials. The presence of bio-

based filler particles minimizes shrinkage of the resin and only minimal micro-cracks have 

been detected by scanning electron microscopy (SEM) of the soybean hull composites.35 
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Recent studies of natural filler-reinforced composites have suggested that maleic anhydride 

(MA) can serve as a good filler-resin compatibilizer and helps to improve the stress transfer 

from the matrix to the reinforcement, resulting in an overall increase in the mechanical 

properties.38 

 These new bio-based composites contain up to 85 wt % of biorenewable content, 

including the resin and the filler.34-38 The technology involved in their preparation is 

remarkably simple and they have great potential in the automobile and construction 

industries. 

 Herein, we report the preparation of bio-based thermosets from vegetable oils with 

different numbers of carbon-carbon double bonds per triglyceride reinforced with sugar-cane 

bagasse. Parameters, such as cure sequence, filler load, and resin composition, have been 

varied and the resulting properties of the composites have been assessed by differential 

scanning calorimetry (DSC), thermogravimetric analysis (TGA), tensile tests, dynamic 

mechanical analysis (DMA), and Soxhlet extraction, followed by proton nuclear magnetic 

resonance (1H NMR) spectroscopic analysis of the extracts. The results provide insight into 

the filler-resin interactions and the thermal stability of the filler present in the composite. 

Experimental 

Materials. n-Butyl methacrylate (BMA) was purchased from Alfa Aesar (Ward Hill, MA). 

Divinylbenzene (DVB), maleic anhydride (MA), di-t-butyl peroxide (TBPO), and tung oil 

(TUN) were purchased from Sigma-Aldrich (St. Louis, MO). All were used as received. 

Soybean oil (Great Value brand – Bentonville, AR) was purchased in a local grocery store, 

and Superb linseed oil was provided by Archer Daniels Midland (Red Wing, MN). Both oils 
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have been conjugated using a rhodium catalyst, following a method developed and frequently 

used by our group.30 The sugar-cane bagasse was generously provided by the U.S. Sugar 

Corporation (Clewiston, FL). 

 The sugar-cane bagasse fibers were washed with water and dried at 50 ˚C overnight. 

To ensure complete removal of moisture, after being ground to particle sizes <2.0 mm, the 

filler has been placed in a vacuum oven at 70 ˚C overnight and been impregnated with the 

resin right after the drying process. 

General procedure for preparation of the bio-based composites. The crude resin was 

obtained by mixing the conjugated or regular vegetable oil, BMA and DVB in a beaker. MA 

was melted in a hot water bath and quickly added to the crude resin mixture at room 

temperature under agitation, along with the free radical initiator TBPO. The natural fillers 

were impregnated with the crude resin and compression molded at 600 psi. The composites 

were then removed from the mold and post-cured in a convection oven at ambient pressure. 

In all composites produced, the resin has a vegetable oil content of 50 wt % and the optimum 

amount of TBPO has been determined to be in preliminary tests an extra 5 wt % of the total 

resin weight. The vegetable oil used and the amounts of BMA and MA have been varied, as 

indicated in the text, to produce composites of various compositions. 

Characterization of the composites. Tensile tests were conducted at room temperature 

according to ASTM D-638, using an Instron universal testing machine (model 5569) 

equipped with a video extensometer and operating at a crosshead speed of 2.0 mm/min. 

Dogbone-shaped test specimens were machined from the original samples to give the 

following gauge dimensions: 57.0 mm x 12.7 mm x 4.5 mm (length x width x thickness, 
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respectively). For each composite, seven dogbones were cut and tested. The results presented 

in the text are the average of these measurements along with the calculated standard 

deviation. 

 DMA experiments were conducted on a Q800 DMA (TA Instruments, New Castle, 

DE) using a three point bending mode with a 10.0 mm clamp. Rectangular specimens of 22.0 

mm x 8.5 mm x 1.5 mm (length x width x thickness, respectively) were cut from the original 

samples. Each specimen was cooled to -60 ˚C and then heated to 250 ˚C at 3 ˚C/min. The 

experiment was conducted using a frequency of 1 Hz and an amplitude of 14 µm under air. 

Two runs for each sample were carried out and the results presented in the text reflect the 

average of the two measurements. 

 Soxhlet extraction was conducted to determine the amount of soluble materials in the 

composites. A 2.0 g sample of each composite was extracted for 24 h with dichloromethane 

(CH2Cl2). After extraction, the solubles were recovered by evaporating the CH2Cl2 under a 

vacuum. Both soluble and insoluble materials were dried overnight at 70 ˚C. The dried 

soluble fraction was then dissolved in deuterated chloroform (CDCl3) and the corresponding 

1H NMR spectrum was obtained using a Varian Unity spectrometer (Varian Associates, Palo 

Alto, CA), operating at 300 MHz. The 1H NMR spectra helped to determine the identity of 

the soluble materials in each sample. 

 DSC experiments were performed on a Q20 DSC (TA Instruments, New Castle, DE) 

under a N2 atmosphere over a temperature range of -20 ˚C to 400 ˚C, while heating at a rate 

of 20 ˚C/min. The samples weighed ~10 mg. 
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 A Q50 TGA instrument (TA Instruments, New Castle, DE) was used to measure the 

weight loss of the samples under an air atmosphere. The samples (~10 mg) were heated from 

room temperature to 650 ˚C at a rate of 20 ˚C/min.  

Results and Discussion 

Cure analysis. Cure time and temperature. In order to determine an appropriate cure 

sequence for the sugar-cane bagasse composites, six different heating treatments have been 

applied to composites bearing 70 wt % of filler, and a resin composed of 50 wt % of CSO, 20 

wt % of BMA, 15 wt % of DVB, and 15 wt % of MA. The mechanical properties of the 

corresponding materials have been compared, and the results are presented in Table I, along 

with the percentage of soluble material recovered after Soxhlet extraction of the samples. 

 
Table I. Tensile and flexural properties, along with the Soxhlet extraction results, for sugar-

cane bagasse composites cured under various cure sequences.a  

Entry Cure 
Temp./Time 

Post-cure 
Temp./Time 

E (GPa) Tensile 
Strength 
(MPa) 

E' (MPa) at 
25 ˚C 

Soluble 
Content 
(wt %)c 

1 180 ˚C / 5h 200 ˚C / 2h - - 1032 5 
2 160 ˚C / 5h 180 ˚C / 2h 3.2 ± 0.5 10.0 ± 1.7 1272 6 
3 140 ˚C / 3h 

160 ˚C / 3hb 
180 ˚C / 2h 2.9 ± 0.5 11.6 ± 1.5 597 5 

4 140 ˚C / 3h 
160 ˚C / 3hb 

180 ˚C / 0.5h 2.5 ± 0.4 6.8 ± 1.3 2437 8 

5 140 ˚C / 3h 
160 ˚C / 3hb 

180 ˚C / 1h 3.4 ± 0.4 12.6 ± 2.9 1137 6 

6 140 ˚C / 3h 
160 ˚C / 3hb 

180 ˚C / 3h - - 1603 7 

a The filler/resin ratio is 70/30 and the resin composition is 50 wt % of CSO, 20 wt % of 
BMA, 15 wt % of DVB, and 15 wt % of MA. 
b The cure sequence is composed of two stages. 
c Determined after Soxhlet extraction with CH2Cl2 for 24 hours. 
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 Initially, two cure temperatures have been compared (entries 1 and 2, Table I), 

maintaining a post-cure time of 2 hours. When the composite is cured at 180 ˚C for 5 hours 

(entry 1, Table I), the resulting material is significantly degraded, and dogbone specimens 

cannot be obtained to conduct the tensile tests. The use of lower cure and post-cure 

temperatures (entry 2, Table I) results in a completely cured material, with less degradation 

of the filler, as indicated by the higher storage modulus at 25 ˚C. Although the material cured 

at 160 ˚C for 5 hours (entry 2, Table I) shows good mechanical properties, the dark color and 

the burnt smell observed, when demolding the sample, suggest that the fillers are still 

considerably degraded. 

 Finally, a two step cure process has been tested, in which the sample is heated at 140 

˚C for 3 hours, and at 160 ˚C for another 3 hours, before being submitted to the 2 hour post-

cure step (entry 3, Table I). In this case, despite the overall longer time in the hot press, the 

sample was exposed to the maximum temperature for a shorter time, and didn't darken 

significantly or exhibit any burnt odor after the process. The results for the Young's modulus 

and tensile strength are comparable to those obtained for the sample cured at 160 ˚C for 5 

hours (entry 2, Table I), as the difference between the numbers fall within the standard 

deviation of the measurements. While a significantly lower storage modulus at 25 ˚C is 

observed (entry 3 versus entries 1 and 2, Table I), there is essentially no difference in the 

soluble content of the samples. This indicates that the changes observed in the mechanical 

properties of the sugar-cane bagasse composites, when varying the cure times and 

temperatures, are not related to the crosslink density and/or to the extent of monomer 

incorporation in the matrix. 
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 While higher temperatures seem to degrade the core structure of the filler, longer cure 

times slowly degrade the least thermally stable components of the filler, affecting the 

interface between filler and resin, which results in poor stress transfer from the matrix to the 

reinforcement, and a lower storage modulus. In conclusion, the two step cure sequence has 

been chosen as ideal due to concerns about the thermal stability of the filler. A more 

thorough analysis of the filler's thermal stability will be presented later in the text, when 

discussing the TGA results. 

Post-cure time. After establishing the ideal cure process, as discussed above, a study of the 

post-cure time has been carried out. Samples with the same composition and submitted to the 

same cure sequence have been post-cured for times varying from 0.5 hour to 3 hours, and 

their mechanical properties and soluble content have been compared (entries 3-6, Table I). It 

has been shown previously that the post-cure of vegetable oil-based composites reinforced 

with rice hulls is crucial in order to get a fully crosslinked material with maximum monomer 

incorporation into the matrix, and the best mechanical properties possible.39 

 When comparing samples post-cured for 0.5 hour and 1 hour (entries 4 and 5, Table 

I), it is apparent that the 0.5 hour post-cure step isn't sufficient to fully cure the resin. Besides 

the significantly lower tensile properties, the sample post-cured for 0.5 hour still exhibits a 

strong odor of unreacted monomers, indicating that the resin components aren't fully 

incorporated into the matrix. Further evidence of that is the relatively high percentage of 

soluble materials recovered after Soxhlet extraction of the material, when compared to entry 

5 (Table I). Interestingly, the sample post-cured for 0.5 hour exhibits a significantly higher 

storage modulus. The DMA experiments have been repeated twice, and similar results have 
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been found each time. This supports the hypothesis that longer heating times have a negative 

impact on the filler structure, especially at the filler-matrix interface. 

 When the post-cure time is increased to 2 hours (entry 3, Table I), the differences in 

the tensile properties, with respect to the sample post-cured for 1 hour, fall within the 

standard deviation of the measurements, and similar soluble contents are found. 

Nevertheless, a significant decrease in storage modulus is again observed. 

 The tensile properties of the sample post-cured for 3 hours could not be obtained due 

to severe degradation of the filler during the heat treatment (entry 6, Table I). The increase in 

storage modulus at 25 ˚C with respect to entry 3 (Table I) does not follow the trend observed 

for the other samples and can possibly be related to non-homogeneity of the material after 

degradation of the filler. Unfortunately, no more than two DMA specimens could be obtained 

for that particular sample, in order to either confirm or discard the results presented. There is 

a slight increase in the soluble content that might be a consequence of fragmentation of the 

resin components, yielding CSO fragments and oligomers that can then be extracted during 

the Soxhlet extraction process. 

 Figure 1 depicts the DSC curves of samples post-cured at the same temperature, but 

for different times. For clarity purposes, the sample post-cured for 0.5 hour has been omitted. 

 When analyzing the DSC curve of the sample post-cured for 1 hour, some 

characteristic features are observed. There is a small exothermic peak at 156 ˚C attributed to 

residual crosslinking of the matrix components. The sharp endothermic peak at 234 ˚C is 

associated with initial thermal degradation of the filler, and all of the other peaks above 250  
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Figure 1. DSC curves for 70 wt % filled sugar-cane bagasse composites post-cured at 180 ˚C 
for varying times. The resin composition is 50 wt % of CSO, 20 wt % of BMA, 15 wt % of 
DVB, and 15 wt % of MA, and the cure sequence consists of 3 hours at 140 ˚C, followed by 

3 hours at 160 ˚C. 

 

˚C are related to degradation of the different components of the materials being analyzed.39 

When the composite is post-cured for 2 hours, a very similar DSC curve is obtained, with the 

same features described for the sample cured for 1 hour. There is only an increase in the 

temperature of the residual cure peak from 156 ˚C to 178 ˚C. On the other hand, the sample 

post-cured for 3 hours gave a very distinct DSC curve. No exothermic peaks are detected. 

The endothermic peak occurs at a significantly lower temperature (149 ˚C), and it is 

significantly less intense and broader than the ones observed in the other DSC curves. These 

results confirm that the 3 hour post-cure is responsible for extensive degradation of the 

material in comparison with the 1 hour and 2 hour processes. Otherwise, except for the 
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storage modulus, no significant differences have been found between composites post-cured 

for 1 hour and 2 hours. In view of these facts, a 1 hour post-cure has been chosen as the ideal, 

and has been used in the preparation of all of the composites in the remainder of this project. 

Filler load evaluation. The properties of sugar-cane bagasse composites prepared with filler 

loads varying from 60 wt % to 80 wt % are summarized in Table II. For comparison 

purposes, the properties of the unreinforced resin and the pure filler have also been included 

(entries 1 and 5 respectively in Table II). The resin, unless otherwise noted, is composed of 

50 wt % of CSO, 20 wt % of BMA, 15 wt % of DVB, and 15 wt % of MA. The composites 

were cured for 3 hours at 140 ˚C, followed by another 3 hours at 160 ˚C, and post-cured for 1 

hour at 180 ˚C. 

 
Table II. Characterization of sugar-cane bagasse composites containing various filler loads.a  

E' (MPa) 
Entry Filler Load 

(wt %) E (GPa) 
Tensile 

Strength 
(MPa) at 25 ˚C  at Tg 2 

+ 50 ˚C 
T7 (˚C) 

1 0b - - 152 56 327 
2 60 3.9 ± 1.2 15.7 ± 2.2 760 447 273 
3 70 3.4 ± 0.4 12.6 ± 2.9 1137 680 265 
4 80 2.6 ± 0.1 9.8 ± 1.3 694 302 258 
5 100c - - - - 245 

a The composites were cured for 3 hours at 140 ˚C, followed by another 3 hours at 160 ˚C, 
and post-cured for 1 hour at 180 ˚C. The resin composition is 50 wt % of CSO, 20 wt % of 
BMA, 15 wt % of DVB, and 15 wt % of MA. 
b Unreinforced resin containing 50 wt % of CSO, 35 wt % of BMA, and 15 wt % of DVB. 
c Non-dried sugar-cane bagasse without resin. 

 

 The reinforcing effect of sugar-cane bagasse can be clearly observed when comparing 

the storage modulus results of the unreinforced resin and a composite containing 60 wt % of 
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sugar-cane bagasse (entries 1 and 2, Table II). Indeed, a five fold improvement in E' at 25 ˚C 

and an eight fold improvement in E' at Tg2 + 50 ˚C are observed when sugar-cane bagasse is 

added to the resin. When the filler content is increased from 60 wt % to 80 wt % (entries 2-4, 

Table II), a decrease in the tensile properties is observed. As indicated by SEM images of 

soybean35 and rice hull38,39 composites with similar resin compositions the higher filler 

content leads to agglomeration of the ligno-cellulosic particles and formation of weak points 

within the composite structure. 

 In the three-point bending mode of deformation, an increase in the filler content from 

60 wt % to 70 wt % is beneficial to the flexural properties of the composite, as noted by an 

increase in the storage modulus (entries 2 and 3, Table II). This behavior is in contrast to 

what has been observed for the tensile properties, leading to the conclusion that with a filler 

load of 70 wt %, the particle agglomeration isn't sufficient to have a negative impact on the 

flexural properties. Instead, the reinforcing nature of the sugar-cane bagasse particles 

prevails, and an increase in storage modulus results. When the filler content is increased to 

80 wt %, there is an excess of filler, as discussed earlier for the tensile properties, and a 

decrease in the storage modulus is observed (entry 4, Table II). 

 Homogeneous composites containing less than 60 wt % of sugar-cane bagasse could 

not be obtained. The filler deposited on the bottom of the mold, and significant resin leakage 

from the mold during the cure has been observed. The resulting material exhibited a rough 

surface and the properties could not be measured. Likewise, a mixture of filler and resin 

beyond the 80/20 ratio doesn't result in viable composites, as the materials crumble too easily 
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when handled, which is a consequence of the lack of enough resin to hold the filler particles 

together.  

 The thermal stability of the sugar-cane bagasse composites is strongly dependent on 

the filler content, as evident when comparing the T7 values of the composites containing 60 

wt % to 80 wt % of sugar-cane bagasse (entries 2-4, Table II, and Figure 2). T7 represents the 

temperature at which 7 wt % of the material has degraded in the TGA experiment. By 

comparing the T7 values of the unreinforced resin and the sugar-cane bagasse alone (entries 1 

and 5, Table II), it becomes evident that the sugar-cane bagasse is significantly less thermally 

stable than the vegetable oil-based resin. Therefore, it is expected that a mixture of the two 

components would result in a material with a thermal stability between those observed for the 

filler and the resin individually. As the amount of filler increases in the composite (entries 2-

4, Table II), a gradual decrease in the T7 value is observed, and the degradation temperature 

approaches that of the filler alone (entry 5, Table II). That trend can be better visualized in 

Figure 2. 

 Figure 2 illustrates the TGA curves of the unreinforced resin, the sugar-cane bagasse, 

and composites containing 60 wt % to 80 wt % of sugar-cane bagasse. It is interesting to note 

that the thermal degradation of the unreinforced resin occurs in one major step, while that of 

the sugar-cane bagasse can be divided into four well defined steps. The first step corresponds 

to desorption of water from the filler structure and occurs between 80 ˚C and 110 ˚C. The 

second step, from 251 ˚C until 320 ˚C, corresponds to degradation of the hemicellulose. The 

third step, occurring in the 320 ˚C to 368 ˚C temperature range, corresponds to degradation 

of the cellulose. The lignin component of biomass typically degrades over a wide range of 
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temperatures.39 In this case, the values determined from the derivative of the TGA curve (not 

shown in Figure 2) are 245 ˚C to 534 ˚C. 

 
Figure 2. TGA curves for CSO-based composites reinforced with varying amounts of sugar-
cane bagasse. The resin composition is 50 wt % of CSO, 20 wt % of BMA, 15 wt % of DVB, 
and 15 wt % of MA, and the cure sequence consists of 3 hours at 140 ˚C, followed by 3 hours 

at 160 ˚C. The composites are post-cured at 180 ˚C for 1 hour. 
 

 The thermal degradation pattern observed for composites containing 60 wt % to 80 wt 

% of the filler is similar to that obtained for the sugar-cane bagasse alone, with four well 

defined degradation stages. Significant differences are only observable in the degradation 

pattern after approximately 400 ˚C, namely during degradation of the main resin components. 

In view of the results presented in this section, 60 wt % is considered to be the optimum 

amount of filler in these sugar-cane bagasse composites, and that filler load has been used for 

the preparation of all composites in the remainder of this project. 
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Resin composition. It has been previously shown that changes in the resin composition can 

significantly affect the mechanical properties of bio-based composites.35,38 The use of 

vegetable oils with different numbers of carbon-carbon double bonds directly affects the 

crosslink density of the matrix and, as a consequence, differences in the tensile strength, and 

Young's and storage moduli have been observed when comparing CSO and CLO-based rice 

hull composites.38 Furthermore, the addition of MA as a filler-resin compatibilizer in 

vegetable oil-based rice hull composites has resulted in a significant improvement in the 

storage modulus by promoting better stress transfer from the matrix to the reinforcement.38 

The properties of sugar-cane bagasse composites prepared with resins of various 

compositions are given in Table III. 

 
Table III. Characterization of sugar-cane bagasse composites with various resin 

compositions.a  

Entry Oil (50 
wt %) 

BMA 
(wt 
%) 

MA 
(wt 
%) 

E 
(GPa) 

Tensile 
Strength 

(MPa) 

Tg1 
(˚C)b 

Tg2 
(˚C)b 

E’ at Tg2 
+ 50 ˚C 
(MPa) 

Soluble 
Content 
(wt %)c 

1 CSO 35 - 3.0 ± 
0.6 

9.3 ± 0.4 15 115 676 4 

2 CSO 20 15 3.9 ± 
1.2 

15.7 ± 2.2 -20 83 450 3 

3 CLO 20 15 3.2 ± 
0.4 

13.8 ± 0.9 -24 76 1180 5 

4 TUN 35 - 3.7 ± 
0.7 

16.2 ± 1.2 20 113 1169 2 

5 TUN 20 15 3.5 ± 
0.7 

14.0 ± 0.7 10 74 895 7 

a The composites contained 60 wt % of filler, and have been cured for 3 hours at 140 ˚C, 
followed by another 3 hours at 160 ˚C, and post-cured for 1 hour at 180 ˚C. 
b Determined by DMA. 
c Determined after Soxhlet extraction with CH2Cl2 for 24 hours. 
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 From the results in Table III, it is evident that, for composites prepared in the absence 

of MA, the choice of the oil used to prepare the resin has a strong influence on the tensile and 

flexural properties of the final composite material. Indeed, significant increases in the tensile 

strength and in the storage modulus at Tg2 + 50 ˚C are observed when tung oil is used as the 

major resin component in comparison with CSO (entries 1 and 4, Table III). With an average 

of 7.9 carbon-carbon double bonds per triglyceride, tung oil can form a matrix with a higher 

crosslink density than CSO (~4.5 carbon-carbon double bonds per triglyceride), which results 

in overall better mechanical properties. This hypothesis is supported by the soluble content 

recovered from the corresponding samples after Soxhlet extraction (entries 1 and 4, Table 

III).  Only 2 wt % of soluble material has been recovered from the sample prepared with tung 

oil, as opposed to 4 wt % recovered from the sample prepared with CSO. An exception to the 

trend of improved mechanical properties with the use of a more unsaturated oil is the 

Young's modulus. The difference in the stiffness of samples prepared with TUN and CSO 

isn't significant and cannot be attributed to the structure of the oils used (entries 1 and 4, 

Table III).  

 For MA-containing composites (entries 2, 3, and 5, Table III), the relationship 

between the oil structure and the mechanical properties isn't as clear as for the composites 

that do not contain MA. No significant changes in the tensile properties are observed for 

samples prepared with different oils, as the results obtained for the Young's modulus and the 

tensile strength fall within the standard deviation of the corresponding measurements. When 

CLO (~6.0 carbon-carbon double bonds per triglyceride) is used as the major resin 

component, an increase in the storage modulus at Tg2 + 50 ˚C is observed when compared to 

the sample made from CSO (entries 2 and 3, Table III). However, a decrease in that number 
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is observed when tung oil is used (entry 5, Table III). The soluble content results are also 

opposite the expected trend, as more material is recovered from samples prepared with the 

more unsaturated oils. 

 These results can't be fully explained, but the deviation from the expected trends are 

possibly related to the initial treatment applied to the sugar-cane bagasse. The wash and the 

extended drying to which the fillers have been submitted may have affected the surface of the 

ligno-cellulosic materials, and therefore altered their polarity, making them less hydrophilic. 

In that sense, MA no longer works as a compatibilizer between a hydrophobic matrix and a 

highly hydrophilic filler. On the one hand, this leads to a better interaction between filler and 

resin even in the absence of MA. On the other hand, the addition of MA to the resin 

composition represents a decrease in the BMA content. As demonstrated previously with 

soybean and rice hull composites, the mechanical properties are also closely related to the 

BMA content of the resin.35,38 

 The trend observed when comparing the mechanical properties of composites made 

with and without MA is further evidence of the poor compatibilizing effect that MA exhibits 

in this system. For CSO-containing composites (entries 1 and 2, Table III), the replacement 

of 15 wt % of BMA with 15 wt % of MA resulted in an expected increase in the tensile 

properties. Nevertheless, a significant decrease in the storage modulus at Tg2 + 50 ˚C is also 

observed. When tung oil is the major resin component (entries 4 and 5, Table III), the 

addition of MA results in a decrease in all of the mechanical properties measured. The effect 

of substituting BMA by MA on the storage modulus can be better visualized in Figure 3, 
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where the curves of E' versus temperature for composites prepared with and without MA are 

plotted. 

 
Figure 3. Storage modulus versus temperature for composites with the following resin 

compositions:  (A) 50 wt % of CSO, 35 wt % of BMA, and 15 wt % of DVB; (B) 50 wt % of 
CSO, 20 wt % of BMA, 15 wt % of DVB, and 15 wt % of MA; (C) 50 wt % of TUN, 35 wt 

% of BMA, and 15 wt % of DVB; (D) 50 wt % of TUN, 20 wt % of BMA, 15 wt % of DVB, 
and 15 wt % of MA. The composites possess a filler/resin ratio of 60/40, and have been 
cured for 3 hours at 140 ˚C and 3 hours at 160 ˚C, and post-cured for 1 hour at 180 ˚C. 

 

 From a comparison of Figures 3A and 3B, it is clear that the addition of MA to CSO-

containing composites results in a lower storage modulus throughout the temperature range 

investigated. For the tung oil-containing samples (Figures 3C and 3D), the results are a little 

more complex. Indeed, the expected trend of MA-containing materials exhibiting a higher 

storage modulus is observed for temperatures below 10 ˚C. After that, an inversion occurs, 
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and the MA-containing composite exhibits a lower E'. Beyond approximately 210 ˚C, a 

decrease in E' indicates initial degradation of the system. 

 The 1H NMR spectra of the extract of sugar-cane bagasse, CSO, and the extract of a 

composite containing 60 wt % of filler with a resin that's composed of 50 wt % of CSO, 20 

wt % of BMA, 15 wt % of DVB, and 15 wt % of MA are presented in Figure 4. In the 

spectrum of the sugar-cane bagasse extract (Figure 4A), only protons in the aliphatic region 

have been detected. Although the substance extracted hasn't been thoroughly characterized 

and identified, the absence of characteristic peaks indicating functional groups and/or 

multiple bonds in the spectrum implies that this substance is, most likely, a hydrocarbon, that 

could work as a plasticizer in the composite system. Nevertheless, only 5 wt % of that 

material has been recovered after Soxhlet extraction (data not included in Table II). 

 Figure 4C is representative of the extracts of all of the composites prepared in this 

work. By comparing Figures 4B and 4C, it becomes clear that the vegetable oil is the major 

component extracted from the composite. Indeed, this has been observed in previous works 

with soybean and rice hulls,35,39 and has been attributed to the low reactivity of the oil 

relative to the other co-monomers present in the matrix. 

 From the results in Table III, it is evident that all of the composites prepared exhibit 

two distinct Tg's. The appearance of two Tg's has been previously attributed to a phase 

separation of the resin due to a significant difference in the reactivity and rate of 

polymerization of the different co-monomers that comprise the matrix.35,38 It has also been 

previously noted that when more unsaturated oils are used as the major resin component, the  
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Figure 4. 1H NMR spectra of (A) the extract of sugar-cane bagasse, (B) CSO, and (C) the 

extract of a composite containing 60 wt % of filler and a resin that's composed of 50 wt % of 
CSO, 20 wt % of BMA, 15 wt % of DVB, and 15 wt % of MA cured for 3 hours at 140 ˚C 

and for 3 hours at 160 ˚C, followed by a post-cure at 180 ˚C for 1 hour. 
  

phase separation is avoided due to their increased reactivity, and only one Tg is observed as a 

consequence.38 Here, two distinct Tg's are observed for all of the composites prepared, 

regardless of the oil used. It is believed that the better filler-resin interaction imparted by the 

initial wash and drying of the filler makes the diffusion of larger molecules, such as 

triglycerides, more difficult. Molecules that can diffuse better, react faster, and get 

incorporated into the growing polymer chains preferentially, which results in the phase 

separation. It is interesting to note that the Tg's of samples prepared with MA are significantly 

lower than the ones observed for samples that do not contain MA, when the same oil is used 

(entries 1 and 2, and 4 and 5, Table III). 
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 Figure 5 compares the tan delta curves of samples made with different vegetable oils. 

It is noticeable that all samples exhibit two tan delta peaks, independent of the oil used, 

indicative of two distinct Tg's. The first Tg is attributed to the vegetable oil-rich phase, 

whereas the second Tg relates to a DVB-rich phase. 

 

 
Figure 5. Tan delta curves for samples made with (A) CSO, (B) CLO, and (C) tung oil. The 
composites possess a filler/resin ratio of 60/40, and have been cured for 3 hours at 140 ˚C 

and 3 hours at 160 ˚C, and post-cured for 1 hour at 180 ˚C. The resin composition is 50 wt % 
of vegetable oil, 20 wt % of BMA, 15 wt % of DVB, and 15 wt % of MA. 

 

Conclusions 

 In this work, we have prepared vegetable oil-based thermoset composites reinforced 

with sugar-cane bagasse. An initial cure sequence study showed that the changes in 

mechanical properties, observed when the sample is cured under different temperatures and 
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times, are related to the thermal stability of the filler. However, the post-cure step, carried out 

at ambient pressure, right after the cure of the material, has a great impact on the crosslink 

density of the resin, as shown by the Soxhlet extraction results. An optimum filler load of 60 

wt % resulted in the most thermally stable and viable composites. Furthermore, better overall 

properties are obtained when more unsaturated oils are used as the major resin component. It 

has been shown that the initial washing and drying of the sugar-cane bagasse affect the filler-

resin interaction and result in a phase separation of the matrix, independent of the oil used in 

the preparation of the composites. Also, with a better interaction between resin and filler, 

MA no longer acts as a compatibilizer in the system, and an overall decrease in storage 

modulus is observed when MA is added to the resin composition. 
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Abstract 

Oat hull composites have been prepared by the free radical polymerization of regular 

or modified natural oils with divinylbenzene, n-butyl methacrylate, and maleic anhydride in 

the presence of dried, ground oat hulls. Parameters, such as cure time, filler load, cure 

temperature, and the fatty acid composition of the conjugated natural oil, have been 

investigated and related to the structure and properties of the composites. Structure-property 

relationships have been determined with the use of tensile tests, DMA, TGA, and Soxhlet 

extraction, followed by 1H NMR spectroscopic analysis of composite extracts. The best 

overall properties have been obtained for tung oil-based composites bearing 80 wt % of oat 

hulls cured at 160 ˚C for 4 hours.  

Introduction 

 The partial replacement of petroleum-derived plastics and composites by novel bio-

based materials from inexpensive, renewable, natural resources has the potential to greatly 

impact the plastics, coatings, and composites industries. Currently, the polymer industry is 

responsible for approximately 7% of all oil and gas used worldwide.1 Natural starting 

materials, such as natural oils and agricultural residues, tend to be readily available in large 
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quantities, and may afford more biodegradable materials than the virtually indestructible 

petroleum-based polymers. Furthermore, new bio-based materials may present properties not 

currently available in commercial petroleum-based products, with an overall intrinsic low 

toxicity. These characteristics make bio-based materials very appealing, and the increasing 

attention bio-renewable chemicals are receiving in both industrial and academic settings may 

lead to significant progress towards environmental sustainability in the near future.1,2 

A variety of chemicals and materials are currently prepared from natural oils, 

polysaccharides, wood, and proteins.3 As an example, natural oils find wide use in paints,4 

biocoatings,5,6 biofuels,7 and as building blocks for bio-based polymeric resins, including 

polyurethanes,8-10 polyester amides,11 multicomponent thermosets,12-14 and cyanate esters.15 

As a matter of fact, 15% of all soybean oil produced from 2001 to 2005, was employed for 

industrial uses.16 

Natural oils are triglycerides that differ from one another with respect to the length of 

the fatty acid chains, and the number and position of the carbon-carbon double bonds along 

those fatty acid chains. The final fatty acid composition of a specific natural oil is directly 

related to its physical and nutritional properties, and varies according to the plant from which 

the oil is extracted and the corresponding growing conditions.17 Table I summarizes the fatty 

acid composition of the most commonly used natural oils. 

In recent years, a variety of bio-based polymers, with good thermal and mechanical 

properties, have been developed through the free radical18-21 or cationic22-24 copolymerization 

of regular or modified natural oils with several petroleum-based comonomers. In such 
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Table I. Approximate fatty acid composition of commonly used natural oils in the 

preparation of new bio-based materials. 

Oil 

Linolenic 
acid 

(C18:3)a 
content 

(%) 

Linoleic 
acid 

(C18:2)a 
content 

(%) 

Oleic acid 
(C18:1)a 
content 

(%) 

Stearic 
acid 

(C18:0)a 
content 

(%) 

Palmitic 
acid 

(C16:0)a 
content 

(%) 

Double 
bonds per 

triglycerideb 

Tung oilc - 6 4 - 6 7.9 
Linseed oil 56 15 19 4 6 6.5 
Soybean oil 8 54 23 4 11 4.7 

Corn oil 1 60 26 2 11 4.5 
Fish oild - - 11-25 - 10-22 9.9 

a The notation in parentheses (Cx:y), after the fatty acid name, denotes the number of carbon 
atoms (x), followed by the number of carbon-carbon double bonds (y) in the corresponding 
fatty acid. The carbon-carbon double bonds in these natural oils possess predominantly a cis 
configuration. 
b Average number of carbon-carbon double bonds per triglyceride. 
c Approximately 84 % of the fatty acid chains in tung oil are alpha-eleostearic acid, a 
naturally conjugated triene.18 

d Fish oil possesses a high percentage of polyunsaturated fatty acids, containing as many as 5 
to 6 non-conjugated carbon-carbon double bonds.22 

 

systems, the reactive sites are the carbon-carbon double bonds in the triglycerides and the 

comonomers used. Overall, the reactivity of natural oils towards these polymerization 

processes can be significantly increased if the carbon-carbon double bonds in the fatty acid 

chains are conjugated.25 Furthermore, the crosslink density of the final resin can be varied by 

using oils with varying numbers of carbon-carbon double bonds per triglyceride, or by 

varying the comonomers’ concentration.  

Bio-based materials with improved properties can be obtained by simply reinforcing 

these free radical or cationic polymeric matrices with various agricultural residues and 

natural fibers, such as spent germ,26 soybean hulls,27 corn stover,28 wheat straw,29 rice hulls,30 
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switch grass,31 and wood flour.32 These bio-based residues have been added to the 

aforementioned natural oil-based resins to prepare composites with up to 85 wt % of bio-

based content, including the resin and the filler.26-32 

One of the most promising resin compositions for composite applications investigated 

by us consists of 50 wt % of conjugated soybean oil (CSO) or conjugated linseed oil (CLO), 

20 wt % of n-butyl methacrylate (BMA), 15 wt % of divinylbenzene (DVB), and 15 wt % of 

maleic anhydride (MA).30 This system has been cured in the presence of an extra 5 wt % of 

the free radical initiator di-t-butyl peroxide (TBPO) with respect to the total resin weight.30 In 

such a system, DVB acts as a crosslinker, while MA acts as a filler-resin compatibilizer.27,30 

Oat hulls, another example of an abundant under-used agricultural by-product, are 

essentially the outer skin of the oat grain. The large quantity of oat hulls produced and their 

limited industrial application to date account for their low price. Due to their high pentose 

biopolymer content, oat hulls have been proposed as an alternative starting material for the 

production of furfural, which can be converted in the presence of aldehydes into 

hydrocarbons for biofuel applications through a three step process.33 Because of their 

relatively high fiber content (lignin, cellulose, and hemicellulose), low cost, and ready 

availability, oat hulls are also particularly attractive as an economical and environmentally-

friendly reinforcement for biocomposites. 

In this work, we have prepared oat hull composites from a series of regular and 

conjugated natural oils. Parameters, such as cure temperature, filler load, cure time, and the 

degree of unsaturation of the oils have been varied, and structure-property relationships have 

been assessed by means of tensile tests, dynamic mechanical analysis (DMA), 
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thermogravimetric analysis (TGA), Soxhlet extraction followed by proton nuclear magnetic 

resonance (1H NMR) spectroscopic analysis of the extracts, and differential scanning 

calorimetry (DSC). 

Experimental 

Materials. n-Butyl methacrylate (BMA) was purchased from Alfa Aesar (Ward Hill, MA). 

Divinylbenzene (DVB), maleic anhydride (MA), di-t-butyl peroxide (TBPO), and tung oil 

(TUN) were purchased from Sigma-Aldrich (St. Louis, MO). All chemicals were used as 

received. Soybean oil and corn oil were purchased in a local grocery store. Superb linseed oil 

was generously provided by Archer Daniels Midland (Red Wing, MN), and Menhaden 

Norwegian fish oil was generously supplied by Omega Protein (Houston, TX). With the 

exception of tung oil, the natural oils have been conjugated using a rhodium catalyst, 

following a method developed and frequently used by our group.25 The oat hulls, gratefully 

provided by Quaker Oats (Chicago, IL), have been ground to afford particles <2.0 mm in 

diameter, and dried in a vacuum oven at 70 ˚C overnight prior to being impregnated with the 

crude resin. 

General procedure for preparation of the oat hull composites. The crude resin was 

prepared by mixing 50 wt % of regular or conjugated natural oil, 20 wt % of BMA, 15 wt % 

of DVB, and 15 wt % of MA in a beaker. The mixture was heated to 60 ˚C under agitation to 

melt the MA and form a homogeneous liquid. An extra 5 wt % of the total resin weight of the 

free radical initiator TBPO was added to the homogeneous mixture under agitation. That 

amount of TBPO had been previously determined to be the optimal amount in preliminary 

tests. The ground and dried oat hulls were manually mixed with the crude resin in a 6” x 6” 
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mold using a spatula. The filler/resin ratios varied from 70/30 to 80/20. The actual amount of 

filler and resin used in the preparation of each composite was tailored to yield a piece with a 

thickness of approximately 0.5 cm. The impregnated resin was compression molded at 600 

psi at different times and temperatures. Cure times varied from 0.5 hours to 6 hours. The 

resulting composites were then demolded and post-cured in a convection oven for two hours 

at ambient pressure. 

Characterization of the composites. Tensile tests were conducted at 25 ˚C according to 

ASTM D-638 using an Instron universal testing machine (model 5569) equipped with a 

video extensometer and operating at a crosshead speed of 2.0 mm/min. The dogbone test 

specimens had the following gauge dimensions: 57.0 mm x 12.7 mm x 4.5 mm (length, 

width, and thickness, respectively). For each composite, seven dogbones were cut and tested. 

The results presented in the text are the average of these measurements along with the 

calculated standard deviation. 

Dynamic mechanical analysis (DMA) was conducted on a Q800 DMA (TA 

Instruments, New Castle, DE) using a three-point bending mode with a 10.0 mm clamp. 

Rectangular specimens of 22.0 mm x 8.5 mm x 1.5 mm (length, width, and thickness, 

respectively) were cut from the samples. Each specimen was cooled to -60 ˚C and then 

heated at 3 ˚C/min to 250 ˚C. The tests were performed using a frequency of 1 Hz and an 

amplitude of 14 µm under air. Two runs for each sample were carried out and the results 

presented in the text reflect the average of the two measurements. 
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A Q50 TGA instrument (TA Instruments) was used to measure the weight loss of the 

samples under an air atmosphere. The samples were heated from room temperature to 650 ˚C 

at a heating rate of 20 ˚C/min. The samples weighed approximately 10 mg. 

Soxhlet extraction was conducted to determine the amount of soluble materials in the 

composites. A 2 g sample was extracted for 24 h with dichloromethane (CH2Cl2). After 

extraction, the resulting solution was concentrated on a rotary evaporator, and then both the 

soluble and insoluble materials were dried in a vacuum oven at 70 ˚C overnight before 

weighing. The soluble fraction of each extracted sample was dissolved in CDCl3 and proton 

nuclear magnetic resonance (1H NMR) spectroscopic analysis was carried out. The 1H NMR 

spectra were obtained with a Varian Unity spectrometer (Varian Associates, Palo Alto, CA) 

operating at 300 MHz. 

Differential scanning calorimetry (DSC) experiments were carried out in a Q20 DSC 

(TA Instruments, New Castle, DE) under a N2 atmosphere over a temperature range of -20 ˚C 

to 400 ˚C at a rate of 20 ˚C/min. The samples weighed approximately 10 mg.  

Results and Discussion 

Cure temperature analysis. As observed in our previous studies with various natural 

fillers,26-32 the cure temperature has a great impact on the properties of bio-based composites. 

It has been shown that the thermal stability of the filler is the limiting parameter for the 

establishment of an optimum cure temperature for a particular filler and resin 

combination.27,30,32 After analyzing the TGA curve of the oat hulls (Figure 1D), it has been 

observed that only 3 wt % of the filler degrades between 140 ˚C and 240 ˚C, defining a range 

of temperatures where the oat hulls can be considered thermally stable. Two temperatures 
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within that range (160 ˚C and 180 ˚C) have been investigated as potential cure temperatures 

for oat hull composites. The composites have been cured at the chosen temperatures for 5 

hours and then post-cured for 2 hours at 180 ˚C or 200 ˚C to ensure maximum crosslinking 

and incorporation of the comonomers into the matrix. 

 

 
Figure 1. TGA curves for: (A) a resin consisting of 50 wt % of CSO, 35 wt % of 

BMA and 15 wt % of DVB, (B) an oat hull composite cured at 180 ˚C for 5 hours and post 
cured at 200 ˚C for 2 hours, (C) an oat hull composite cured at 160 ˚C for 5 hours and post-

cured at 180 ˚C for 2 hours, and (D) oat hulls. The matrix of the composites consists of 50 wt 
% of CSO, 20 wt % of BMA, 15 wt % of DVB, and 15 wt % of MA. 

 

When comparing the TGA curves of the filler and the pure resin, it is obvious that the 

resin is more thermally stable than the filler up to 455 ˚C. Indeed, it has been shown that the 

scission of carbon-carbon single bonds in triglycerides starts at temperatures ranging from 

410 ˚C to 450 ˚C, depending on the oil or fat.7 So it is expected that the major matrix 
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component degrades at a significant rate at temperatures higher than 450 ˚C, resulting in a 

lower thermal stability for the resin in comparison to the filler after that temperature. When 

comparing the TGA curves of composites cured at 160 ˚C or 180 ˚C, a similar degradation 

pattern can be observed. The most significant difference between the two samples resides in 

the fact that the sample cured at a lower temperature starts to significantly degrade at 230 ˚C, 

whereas the composite cured at 180 ˚C starts to degrade at 288 ˚C. These observations 

suggest that during the cure at 180 ˚C the material undergoes more degradation than when 

the cure is carried out at 160 ˚C. In fact, the higher cure temperature is responsible for a 

partial degradation of the least thermally stable components of the system, resulting in a 

material that is richer in more thermally stable components, but with a compromised 

structure. Similar results have been observed when studying the cure process of rice hull30 

and wood flour32 composites. The mechanical properties of samples cured at 160 ˚C and 180 

˚C are shown in Table II. 

 
Table II. Mechanical properties of oat hull composites cured at different temperatures.a 

Storage 
modulus 
(MPa) Entry 

Cure 
temperature 

(˚C) 

Post-cure 
temperature  

(˚C) 

Young’s 
modulus 

(GPa) 

Tensile 
strength 
(MPa) 

Tg1 
(˚C) 

Tg2 
(˚C) at 25 

˚C 

at Tg2 
+ 50 
˚C 

1 180 200 -b -b -5 98 633 331 
2 160 180 2.5 ± 0.8 9.7 ± 2.2 -1 95 561 287 

a Conjugated soybean oil (CSO) was employed as the major resin component (50 wt %), and 
a filler/resin ratio of 70/30 (weight) was used. 

b The sample readily crumbled when handled and dogbone specimens could not be obtained 
to perform the tensile tests. 
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Due to severe degradation of the composite structure during the cure at 180 ˚C (entry 

1, Table II), dog-bone specimens could not be obtained in order to run tensile tests on that 

sample. When the cure is carried out at 160 ˚C (entry 2, Table II), no obvious degradation of 

the composite is observed and the results for Young’s modulus and tensile strength are 

comparable to commercial (<20%) glass fiber/epoxy composites. 

The observation of two distinct Tg’s in natural oil-based resins and composites has 

been thoroughly studied and discussed in previous publications and is attributed to a phase 

separation of the matrix into an oil-rich domain and an oil-poor domain.30,32 This separation 

occurs due to the distinctly different reactivity of the natural oil and the other resin 

components towards free radical polymerization. The gap between the two Tg’s observed (Tg2 

– Tg1) is directly related to the extent of the phase separation. When the composite is cured at 

180 ˚C, that gap equals 103 ˚C, whereas a gap of 96 ˚C is observed when the sample is cured 

at 160 ˚C. The cure at a higher temperature, promotes a higher polymerization rate, affecting 

primarily the more reactive resin components, and resulting in a more pronounced phase 

separation. 

Also, the higher cure temperature affords a composite with a higher storage modulus, 

which is possibly related to a slightly higher crosslink density of the matrix. Nevertheless, a 

difference of only 2 wt % has been detected in the soluble content after Soxhlet extraction of 

samples cured at the two different temperatures (results not shown in Table II). The Soxhlet 

extraction results will be discussed in more detail later in the text. Finally, despite the lower 

storage modulus observed for the composite cured at 160 ˚C, that temperature does not cause 

the same degradation of the composite structure as the cure at 180 ˚C. Therefore, 160 ˚C will 
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be used as the cure temperature for preparation of all oat hull composites in the remainder of 

this project. 

Filler load evaluation. In order to determine the optimal amount of filler, oat hull 

composites with 70/30 and 80/20 filler/resin ratios have been prepared. The mechanical 

properties and extraction results of those samples are presented in Table III. Composites with 

filler/resin ratios lower than 70/30 cannot be obtained due to excessive resin leakage during 

the cure. Samples with filler/resin ratios higher than 80/20 result in composites where the 

excess of filler causes agglomeration of oat hulls and formation of exceedingly large weak 

regions within the composite’s structure. 

 
Table III. Mechanical properties and extraction results of oat hull composites with different 

filler loads.a 

Storage 
modulus 
(MPa) Entry 

Filler 
load (wt 

%) 

Young’s 
modulus 

(GPa) 

Tensile 
strength 
(MPa) 

Tg1 
(˚C) 

Tg2 
(˚C) at 25 

˚C 

at Tg2 
+ 50 
˚C 

Soluble 
content (wt 

%)b 

1 70 2.5 ± 0.8 9.7 ± 2.2 -1 95 561 287 4 
2 80 2.5 ± 0.7 8.2 ± 1.3 6 90 384 170 3 

a The composites have been cured at 160 ˚C for 5 hours and post-cured at 180 ˚C for 2 hours. 
CSO has been used as the major resin component (50 wt %). 

b Determined by Soxhlet extraction with CH2Cl2 for 24 hours. 
 

From the results in Table III, one can clearly see that there is no statistical difference 

between the Young’s modulus and the tensile strength of composites with 70 wt % and 80 wt 

% of oat hulls (entries 1 and 2, Table III). The phase separation in the matrix of both samples 

is also very similar, since the value of Tg2 - Tg1 is exactly the same (96 ˚C) for both 

composites. The only property that shows a significant difference between the two samples is 
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the storage modulus (E’). At room temperature, the sample containing 80 wt % of filler 

exhibits a modulus 30% lower than the sample containing 70 wt % of oat hulls. The decrease 

in E’ between the two samples is 40% when the modulus is measured at Tg2 + 50 ˚C. This is 

the only indication that an increase in the filler load from 70 wt % to 80 wt % might have a 

negative effect on the composite’s properties. Taking into consideration the similarity of the 

properties measured for oat hull composites with different filler loads and the relative 

volumes of resin and filler required to prepare such composites, a filler/resin ratio of 80/20 

has been chosen as optimal. 

As expected, due to the lower filler load, the soluble content recovered after Soxhlet 

extraction with CH2Cl2 of the sample listed in entry 1 is slightly higher than that of the 

sample in entry 2 (Table III). It has been shown with a variety of other fillers that the 

majority of the soluble material recovered after Soxhlet extraction of similar bio-based 

composites consists of partially reacted or unreacted comonomers from the resin, most 

noticeably vegetable oils.27,30,32 A similar situation is found here. Figure 2 shows a 

comparison of the 1H NMR spectra of conjugated soybean oil (CSO), and the soluble 

material recovered after Soxhlet extraction of oat hulls and an oat hull composite with a 

filler/resin ratio of 80/20. 

From the spectra presented in Figure 2, it looks like the soluble material recovered 

from the composite (Figure 2C) is a mixture of CSO and the material recovered from the oat 

hulls. Although its exact identity is unknown, the latter exhibits features that are 

characteristic of non-conjugated, unsaturated triglycerides, such as the peak at 2.8 ppm  
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Figure 2. 1H NMR spectra of (A) conjugated soybean oil (CSO), and the soluble material 

recovered after Soxhlet extraction with CH2Cl2 of (B) oat hulls, and (C) a composite 
prepared from CSO, with a filler/resin ratio of 80/20, cured for 5 hours at 160 ˚C. 
 

related to bisallylic hydrogens and the set of peaks between 4.0 ppm and 4.5 ppm, which are 

characteristic of the methylene hydrogens on the glycerol unit of the triglycerides. Both 

features are present in Figure 2C. 

The great overlap and complexity of peaks related to aliphatic hydrogens (0.5-2.5 

ppm) make it extremely hard to attribute those signals to specific groups in the extracts 

studied, and therefore won’t be discussed in detail here. The two peaks covering the range 

5.2-5.4 ppm in Figure 2C correspond well with the vinylic hydrogen peak in Figure 2B (5.35 

ppm, also present in Figure 2A) and the first peak (5.25 ppm) of the vinylic hydrogens of 

conjugated carbon-carbon double bonds in Figure 2A. Those hydrogens correspond to a set 

of signals that range from 5.2 ppm to 6.35 ppm. The lack of those signals in Figure 2C is an 

indication that the CSO possibly recovered during the Soxhlet extraction of the composite is 

most likely present in the form of oligomers, where some of the carbon-carbon double bonds 

reacted, reducing the conjugation of the system. 
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Cure time analysis. It has been previously shown with wood flour composites that varying 

the cure time results in opposite effects on the resin and on the filler.32 Indeed, it has been 

found that on one hand longer cure times tend to increase the thermal degradation of the 

filler, which has a negative effect on the mechanical properties of the composite. On the 

other hand, a positive impact on the resin is seen when the cure lasts longer, because higher 

crosslink densities and monomer incorporation into the matrix are attained. Overall, one 

effect compensates for the other and little variation is found between the properties of bio-

based composites cured at the same temperature for different times.32 

Not surprisingly, similar results have been obtained with oat hull composites. The 

data presented in Table IV show that no statistical difference exists between the Young’s 

modulus (E) and the tensile strength of oat hull composites cured between 0.5 hours and 6 

hours (entries 1-5, Table IV). From the dynamic mechanical analysis (DMA) of the samples, 

no particular trend has been observed for the Tg values of samples cured for different times. 

Nevertheless, a consistent appearance of two distinct Tg’s is detected. As discussed earlier, 

the appearance of two Tg’s is related to a phase separation of the matrix. Despite the 

seemingly random variation of the Tg values with cure time, the overall low temperatures 

observed for Tg1 (-7 ˚C to 14 ˚C) are consistent with the formation of an oil-rich phase, while 

the overall high temperatures observed for Tg2 (89 ˚C to 122 ˚C) are consistent with the 

formation of an oil-poor phase. This phenomenon has already been discussed earlier in the 

text and is attributed to the distinctly different reactivity of the resin comonomers towards 

free radical polymerization. 
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Table IV. Mechanical properties of oat hull composites cured for different times.a 
Storage modulus 

(MPa) 
Entry Cure 

time (h) 
Young’s 

modulus (GPa) 
Tensile 

strength (MPa) 
Tg1 
(˚C) 

Tg2 
(˚C) at 25 

˚C 
at Tg2 + 
50 ˚C 

1 0.5 2.8 ± 1.0 8.8 ± 1.9 -6 100 947 409 
2 1 2.7 ± 0.9 7.7 ± 1.2 14 122 678 285 
3 2 2.0 ± 0.3 7.2 ± 0.9       1 94 1518 824 
4 4 2.4 ± 0.6 8.7 ± 1.8 7 109 969 409 
5 5 2.5 ± 0.7 8.2 ± 1.3 6 90 384 170 
6 6 2.6 ± 1.2 8.9 ± 1.3 -7 89 689 372 

a The composites have been cured at 160 ˚C and post-cured at 180 ˚C for 2 hours. CSO has 
been used as the major resin component (50 wt %) and a filler/resin ratio of 80/20 has been 
employed. 
 

The lack of a distinct trend for the storage modulus measured at room temperature 

and at Tg2 + 50 ˚C for samples cured for varying times makes it hard to relate these results to 

specific changes in the composites’ structure. However, it is quite clear that a maximum 

storage modulus is obtained when the composite is cured for two hours. To help determine 

the optimal cure time, the samples cured for different times have been submitted to 

differential scanning calorimetry (DSC) experiments. The corresponding DSC curves are 

shown in Figure 3. The DSC curve of the sample cured for 0.5 hours is not included in Figure 

3 due to its extended overlap with the curve of the sample cured for one hour. 

 From the DSC curves presented in Figure 3, any transitions occurring after 280 ˚C are 

related to degradation of the matrix, as confirmed by the TGA of the pure resin (Figure 1A). 

This includes the two exothermic peaks at approximately 285 ˚C and 360 ˚C. The two glass 

transition temperatures (Tg’s) related to the resin occur over a fairly broad temperature range, 

and are therefore difficult to determine exactly by DSC. Nevertheless, both transitions can be 
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distinguished in Figure 3 in the temperature ranges -20 ˚C to 0 ˚C and 50 ˚C to 100 ˚C, 

respectively. 

 
Figure 3. Differential Scanning Calorimetry (DSC) curves for oat hull composite 

samples cured at 160 ˚C for varying times. The composites have a filler/resin ratio of 80/20. 

 

The temperature window where transitions related to the cure of the matrix are 

observed ranges from approximately 120 ˚C to 200 ˚C. In that temperature range, a small 

change in the baseline can be observed at approximately 165 ˚C for the sample cured for 1 

hour, and at approximately 132 ˚C for the sample cured for 2 hours (Figure 3). These 

transitions are most likely associated with further cure of the matrix components, and 

indicate that these cure times are not sufficient to produce a completely cured matrix. For the 

sample cured for 4 hours, a series of very small transitions is observed in that temperature 
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range, but no precise temperature can be attributed to further cure of the resin. When the 

composite is cured for 5 hours or 6 hours, such transitions are non-existent. 

As shown with soybean hulls, the minimum of the DSC curves of bio-based 

composites reinforced with biomass corresponds to an endothermic peak related to heat 

absorption during initial volatilization of the least thermally stable components of ligno-

cellulosic materials, such as hemicellulose.27 The temperature where that peak occurs gives 

information about the integrity of the filler after the cure. Indeed, that temperature is 

expected to increase with increasing cure times. As more of the least thermally stable 

components are degraded, the composite becomes richer in more thermally stable 

compounds, which results in a higher volatilization temperature. That temperature is 114 ˚C 

for the composite cured for 1 hour. It corresponds to 117 ˚C for the composite cured for 2 

hours. When the composite is cured for 4 hours or 5 hours, the same volatilization 

temperature is observed (123 ˚C), and after a 6 hour cure, that temperature is 134 ˚C, 

correlating really well with the expected trend. 

The transitions occurring between 200 ˚C and 235 ˚C for composites cured for 1 hour 

and 5 hours are not yet fully understood and won’t be discussed in detail here. Despite the 

clearly higher storage modulus observed for the sample cured for 2 hours, the lack of clear 

transitions related to further cure of the resin and the overall results indicate that a 4 hour 

cure is optimal for preparing oat hull composites with a fully cured resin and without 

severely degrading the filler. Therefore, this cure time will be used from now on in the 

preparation of composites from different natural oils.  
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Effect of different oils on the properties of oat hull composites. As explained earlier in the 

text, different natural oils possess distinctly different triglyceride structures, with particular 

fatty acid compositions (Table I). It is expected that different composite properties will be 

obtained when conjugated natural oils with differing numbers of carbon-carbon double bonds 

per triglyceride are used as the major resin components. When more unsaturated oils are used 

in the preparation of composites, the formation of materials with higher crosslink densities, 

and therefore better mechanical properties is expected. The mechanical properties, along with 

the Soxhlet extraction results from oat hull composites prepared from various conjugated 

natural oils are presented in Table V. 

 
Table V. Mechanical properties and extraction results for oat hull composites made from 

different natural oils.a 

Storage 
modulus (MPa) 

Entry Oil 
Young’s 
modulus 

(GPa) 

Tensile 
strength 
(MPa) 

Tg1 
(˚C) 

Tg2 
(˚C) at 25 

˚C 
at Tg2 + 
50 ˚C 

Soluble 
content 
(wt %)b 

1 CSOc 2.4 ± 0.6 8.7 ± 1.8 7 109 969 409 3 
2 CCOd 2.1 ± 0.3 10.0 ± 1.1 -14 80 1156 581 3 
3 CLOe 2.7 ± 0.5 12.8 ± 1.8 38 83 1694 842 2 
4 CFOf 2.2 ± 0.5 10.9 ± 0.9 - 97 1609 749 3 
5 TUNg 2.9 ± 0.5 13.4 ± 2.6 - 65 3764 1073 2 

a The composites have been cured at 160 ˚C for 4 hours and post-cured at 180 ˚C for 2 hours. 
The filler/resin ratio used was 80/20. 
b Determined by Soxhlet extraction with CH2Cl2 for 24 hours. 
c CSO = conjugated soybean oil 
d CCO = conjugated corn oil 
e CLO = conjugated linseed oil 
f CFO = conjugated fish oil 
g TUN = tung oil 

 

For the Young’s modulus, very little variation is detected when different oils are used 

as the major resin component. The values vary from 2.1 GPa for conjugated corn oil (CCO - 



www.manaraa.com

  159 

 

entry 2, Table V) to 2.9 GPa for tung oil (TUN - entry 5, Table V) and all values fall within 

the standard deviation of the measurements. Some trends start to become evident when the 

tensile strength is analyzed. Despite the low value observed for conjugated soybean oil (CSO 

- entry 1, Table V), the tensile strength of that sample overlaps with those of samples 

prepared from CCO and conjugated fish oil (CFO) when the standard deviations are taken 

into account (entries 2 and 4, Table V). However, there is a definite increase in the tensile 

strength of the composite when conjugated linseed oil (CLO) or TUN are used as the major 

resin component (entries 3 and 5, Table V). When the tensile properties of composites 

prepared from these two oils are compared, no statistical differences are observed (entries 3 

and 5, Table V). 

A comparison of the tensile results of oat hull composites prepared from different oils 

with the information provided in Table I helps explain the observed trends. Indeed, the fatty 

acid composition of corn and soybean oils is very similar, which results in a similar number 

of carbon-carbon double bonds per triglyceride. As a consequence, there is virtually no 

difference in the tensile properties of composites prepared from CSO and CCO. For fish oil, 

approximately 32% of the fatty acid chains are eicosa-5,8,11,14,17-pentaenoic acid (EPA) 

and approximately 25% of the fatty acid chains are docosa-4,7,10,13,16,19-hexaenoic acid 

(DHA).22 Despite the significant amount of polyunsaturated fatty acids and the high number 

of carbon-carbon double bonds per triglyceride (9.9), there is also approximately 47% of 

mono-unsaturated and completely saturated fatty acids. This mix of highly saturated and 

unsaturated fatty acids results in composites with tensile properties similar to those prepared 

from CSO and CCO. For CLO and TUN, the similarity in the tensile properties can be 

explained by the high amount of conjugated carbon-carbon double bonds in both oils. After 
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conjugation, CLO has approximately 71% of its fatty acids with conjugated carbon-carbon 

double bonds, while TUN naturally possesses 84% of conjugated fatty acids. 

The number of carbon-carbon double bonds in the oils used for the preparation of oat 

hull composites also explains the Tg results obtained. While CSO, CCO, and CLO exhibit 

two distinct Tg’s, the use of CFO and TUN results in composites with only one Tg, as 

determined by DMA. The tan delta curves used to determine the Tg values of the oat hull 

composites prepared from different natural oils are presented in Figure 4 and clearly show 

two peaks for CSO and CCO, while only one peak is observed for CFO and TUN. In the case 

of CLO, the first tan delta peak is in fact composed of two very discrete peaks in the 

temperature ranges -30 ˚C to 0 ˚C and the 0 ˚C to 50 ˚C. It is possible that a third phase also 

rich in CLO is formed, but the non-reproducibility of such phase separation with other fillers 

makes it hard to evaluate the origin of this phenomenon. A higher carbon-carbon double 

bond content results in a more reactive oil after conjugation. Oils with more than 6.5 carbon-

carbon double bonds per triglyceride exhibit reactivity similar to the other comonomers in 

the resin, and therefore their use as the major matrix component results in a single phase. 

The storage moduli of oat hull composites prepared from different oils tend to 

increase with the number of carbon-carbon double bonds per triglyceride. In that regard, the 

storage moduli obtained at room temperature and at Tg2 + 50 ˚C for CSO and CCO are very 

close, which correlates well with their similar number of carbon-carbon double bonds per 

triglyceride (4.7 and 4.5, respectively – Table I). When the number of carbon-carbon double 

bonds per triglyceride is increased to 6.5 (CLO – entry 3, Table V), increases of 45-47% in  
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Figure 4. Tan delta curves for oat hull composites prepared from different conjugated 

natural oils. The composites have been cured at 160 ˚C for 4 hours and have a filler/resin 
ratio of 80/20. 

 

the storage modulus at room temperature and at Tg2 + 50 ˚C are observed. The use of CFO as 

the major resin component results in composites with a storage modulus very similar to the 

CLO sample, despite its higher number of carbon-carbon double bonds per triglyceride (9.9). 

As explained earlier, CFO also possesses a high mono-unsaturated and saturated fatty acid 

content, which negatively impact mechanical properties, such as the storage modulus. Not 

surprisingly, the use of TUN results in the highest storage modulus of the series of samples 

analyzed, with an impressive increase of 122% at room temperature and an increase of 27% 

at Tg2 + 50 ˚C with respect to the sample prepared from CLO. 
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The storage modulus versus temperature curves for oat hull composites prepared from 

various conjugated natural oils are shown in Figure 5. The already discussed trends of 

increase in storage modulus with the number of carbon-carbon double bonds per triglyceride 

can be clearly seen from -60 ˚C to approximately 25 ˚C. With the exception of TUN, most of 

the samples exhibit a rubbery plateau that ranges from approximately 50 ˚C to 200 ˚C. Due to 

its higher crosslink density and lower mobility of its polymer chains, TUN exhibits a much 

narrower rubbery plateau (~100 ˚C to 200 ˚C). When the storage modulus of the different 

samples is compared at Tg2 + 50 ˚C (in the rubbery plateau), the aforementioned trend is still 

observed, but smaller differences between the values are detected. Above 200 ˚C, the 

samples lose their ability to restore the energy input during the test and a sudden decrease in 

storage modulus is observed for all of the samples. 

Finally, the Soxhlet extraction results for samples prepared from various oils don’t 

show any significant variation. It was expected that more unsaturated oils would be more 

easily incorporated into the matrix. In fact, since all of the oils used possess a significant 

content of conjugated carbon-carbon double bonds, they are all incorporated to the same 

extent under the cure conditions employed here. 

Conclusions 

In this work, we have prepared conjugated natural oil-based thermoset composites 

reinforced with oat hulls. An initial cure temperature study showed that the changes in 

mechanical properties observed when the sample is cured under different temperatures are 

related to the thermal stability of the filler, and that a temperature of 160 ˚C is sufficient to  
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Figure 5. Storage modulus versus temperature for oat hull composites prepared from 

different conjugated natural oils. The composites have been cured at 160 ˚C for 4 hours and 
have a filler/resin ratio of 80/20. 

 

completely cure the resin without severely damaging the filler. After taking into 

consideration practical aspects involved in the preparation of the composites and the 

mechanical data obtained, a filler load of 80 wt % has been chosen as optimal for the system 

under investigation. The cure time has also been investigated and it has been shown that a 4 

hour cure is optimal for oat hull composites. Finally, it has been observed that composites 

with better overall properties are formed when more unsaturated oils are used as the major 

resin component, with the best material being obtained from tung oil. 
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Abstract 

The biphasic conjugation of soybean and other natural oils, as well as the 

isomerization of various alkenes, has been examined using a rhodium catalyst. A maximum 

yield, of conjugated soybean oil, of 96% has been obtained when the reaction is run at 80 ˚C 

under argon with ethanol as the polar solvent, using triphenylphosphine monosulfonate 

sodium salt (tppms) as the ligand, and the surfactant sodium dodecyl sulfate (SDS). The 

optimized conditions have been tested with other substrates, and the products have been 

analyzed by 1H NMR, GC/MS, and ICP-MS. 

Introduction 

 The positional isomerization of carbon-carbon double bonds in organic molecules is a 

reaction long known and studied.1-4 More recently, carbon-carbon double bond migrations in 

allylic sulphides have been carried out in the presence of Ru homogeneous catalysts to 

produce cycloaddition precursors widely used in organic synthesis.5 The carbon-carbon 

double bond migration in terminal olefins, to produce internal alkenes, has been promoted by 

Ru-carbene complexes,6 and used in the total synthesis of complex natural products.7 
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Heterogeneous catalysts have also been used in the isomerization of 1-hexene and 1-

pentene.8,9 In vegetable oils, the isomerization of carbon-carbon double bonds to produce 

conjugated species has been first reported as a side reaction during the bleaching of vegetable 

oils.10 Later on, isomers of conjugated linoleic acid were detected as by-products in the 

heterogeneous catalytic hydrogenation of soybean oil.11,12 Since then, the production of 

conjugated fatty acids and triglycerides using heterogeneous catalysts has been studied and 

optimized.13-16  

 The presence of carbon-carbon double bonds in natural oils is extremely important for 

their industrial application as biorenewable starting materials. The unsaturation in natural oils 

can give rise to networks of triglyceride repeating units, known as biopolymers.17-23 Besides 

the degree of unsaturation of the oil, the reactivity of the carbon-carbon double bonds is of 

major importance in such processes. Indeed, systems where the transition state is stabilized 

by conjugation have an overall higher reactivity. Conjugated vegetable oils are also useful as 

drying oils for paints and coatings.24 While some natural oils can be used without further 

structural modification to produce coatings,25 cheaper and more readily available vegetable 

oils can be conjugated in order to increase their drying properties and reduce production 

costs.24 

 Conjugated vegetable oils can also be used as a source of conjugated linoleic acid 

(CLA).24 CLA has been shown to possess anticancer and antiatherosclerosis activity, and 

serves as a fat reducing agent.24 Vegetable oils with a high content of linoleic acid have great 

potential for the production of CLA upon conjugation. 
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 As already mentioned, several conjugation processes for vegetable oils have been 

developed to date.10-16 In most of these processes, transition metal hydrides interact with the 

unsaturation in the triglyceride through an addition-elimination mechanism and the carbon-

carbon double bonds “move” along the fatty acid chain to yield conjugated species. In 2001, 

the Larock group at Iowa State University developed a very efficient homogeneous 

conjugation system that used a Rh-based pre-catalyst ([RhCl(C8H14)2]2) and gave more than 

95% conversion for several natural oils, including linoleic acid and ethyl linoleate.24 In situ 

ligand exchange, which converts the pre-catalyst into the presumed active species 

[RhH(ttp)3] (where ttp = tris-p-tolylphosphine) occurs easily under the reaction conditions.24 

The conjugation of vegetable oils in the presence of this catalyst system has been carried out 

under mild reaction conditions (60 oC and argon) for 24 hours and affords no hydrogenation 

products, a typical side product in such processes.26 

 Due to the high yields obtained using the earlier procedure, the mild reaction 

conditions, and the absence of hydrogenated products,24,26 related catalysts looked very 

promising for the preparation of drying oils, CLA, and natural oil-based reactive monomers 

for biopolymers, as well as the isomerization of carbon-carbon double bonds in simple dienes 

and olefins. Although very efficient, this prior Rh catalyst is completely discarded after 

conjugation. Being a homogeneous catalyst, filtration of the products to recover the metal 

complex is very difficult and time consuming. Therefore, the catalyst's reuse is currently not 

an attractive process, despite its high price.  

 Finding procedures that can lead to recyclable and reusable catalysts for the 

conjugation/isomerization of mono and polyenes represents a key step towards the 
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development of greener technologies for preparing olefins and conjugated polyenes of all 

types. Many alternatives to homogeneous catalysts have been proposed, including solid 

catalysts.8,9,11-16 More recently, polymer-bound complexes, and active species tethered to 

inorganic supports have shown reactivities similar to their homogeneous counterparts, with 

the advantage of being more easily recoverable.27-30 

 The alternative we investigate here consists of the conversion of Larock’s 

homogeneous Rh catalyst into an ethanol-soluble complex that works under biphasic 

conditions. This catalyst has the potential advantage of using an environmentally friendly 

solvent and being easily recovered using simple liquid/liquid separation techniques for 

subsequent use, without the need for further purification of the active species or the products. 

Figure 1 illustrates the system studied. 

 

 
Figure 1. Biphasic catalytic system for the conjugation of carbon-carbon double bonds. 

 

 Other reactions have been successfully carried out under biphasic conditions. For 

instance, cross-coupling reactions using water and surfactants at room temperature have been 
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reported by Lipshutz and co-workers.31 Also, fluorous-soluble catalysts for hydroformylation 

reactions have been studied by I. T. Horvath.32 F. Joo has studied aqueous biphasic 

hydrogenation reactions,33 and Li and co-workers have demonstrated the importance of 

surfactants in biphasic reactions.34 

 The successful biphasic reactions cited above do not include the isomerization of 

carbon-carbon double bonds. Indeed, to the best of our knowledge, the conjugation of 

vegetable oils under biphasic conditions has not been reported in the literature. Therefore, the 

approach proposed here significantly broadens the range of catalysts useful for the 

conjugation of vegetable oils. 

Experimental 

Materials. Rhodium trichloride hydrate (RhCl3 • xH2O) was generously supplied by 

Kawaken Fine Chemicals Co., Ltd. (Tokyo, Japan). Ruthenium trichloride hydrate (RuCl3 • 

xH2O) was purchased from Alfa Aesar (Ward Hill, MA). Cyclooctene, 4-

(diphenylphosphino)benzoic acid (dppba), 1,4-cyclohexadiene, 1,5-cyclooctadiene, 1,5-

hexadiene, 1-nonene, methyl linoleate, and the surfactants cetyltrimethylammonium bromide 

(CTAB), Brij 76, Brij 700, and polyoxyethanyl-α-tocopheryl sebacate (PTS) were purchased 

from Aldrich (St. Louis, MO). Absolute ethanol (EtOH) was purchased from Pharmco-Aaper 

(Shelbyville, KY). 3-(Diphenylphosphino)benzenesulfonic acid sodium salt (tppms) was 

purchased from TCI (Tokyo, Japan). Sodium dodecyl sulfate (SDS), tin dichloride dihydrate 

(SnCl2 • 2H2O), methanol (MeOH), 1-propanol (PrOH), 2-propanol (iPrOH), and tert-butanol 

(tBuOH) were purchased from Fisher Chemical (Fair Lawn, NJ). 1-Heptene, 1-decene, and 

1,7-octadiene were purchased from J. T. Baker (Phillipsburg, NJ). Soybean oil (Carlini 
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brand, Batavia, IL), grape seed oil (GrapeOla brand, Irvine, CA), sunflower oil (Wesson 

brand, Irvine, CA), sesame oil (Loriva brand, San Leandro, CA), peanut oil (Planters brand, 

Winston-Salem, NC), and olive oil (HyVee brand, West Des Moines, IA) were purchased in a 

local grocery store. Linseed oil was generously supplied by Archer Daniels Midland (Red 

Wing, MN). Menhaden Norwegian fish oil was supplied by Virginia Prime (Houston, TX). 

Synthesis of the pre-catalyst [RhCl(C8H14)2]2. In a three-necked round-bottomed flask, 

RhCl3 • xH2O was dissolved in a previously degassed mixture of iPrOH and deionized water 

(4:1). One equivalent of cyclooctene was added to the flask and the mixture was stirred for 

fifteen minutes under argon and then allowed to stand at room temperature for five days. The 

resulting crystals were filtered, washed with absolute EtOH, and dried under vacuum. An 

overall yield of 72% was obtained for this process. This procedure is adapted from a 

previously published literature process.35
 

Isomerization of carbon-carbon double bonds under biphasic conditions. In a capped 

vial, the surfactant was dissolved in 5 g of the substrate, and the mixture was degassed and 

flushed three times with argon, while stirring at room temperature to remove the O2 dissolved 

in the substrate that could potentially oxidize the phosphine-based ligands. In a separate vial, 

the pre-catalyst, the ligands, and SnCl2 • 2H2O were dissolved in 5 mL of the 

alcohol/deionized water mixture. This vial was also degassed and flushed with argon for the 

same aforementioned reason. The amount of SnCl2 • 2H2O was fixed at eight times that of the 

pre-catalyst based on an optimization study previously conducted.24 Using a canula, the 

mixture containing the substrate and the surfactant was transferred to the vial containing the 

catalyst solution. The system was stirred in an oil bath under argon. After 24 hours, the vial 
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was removed from the oil bath and allowed to cool to room temperature. The products and 

the catalyst solution separated into two distinct phases. Aliquots of the products were taken 

using a glass syringe, and were analyzed by 1H NMR spectroscopy, GC/MS, and ICP-MS for 

determination of the yield and concentration of Rh in the products. 

Recycle of the catalyst. After the first cycle (24 hours), the reaction vial was removed from 

the oil bath and allowed to cool to room temperature. The products and the catalyst solution 

separated into two distinct phases. Using a glass syringe, the product phase was carefully 

removed from the vial, and a mixture containing 5 g of fresh substrate and surfactant was 

degassed and charged to the reaction vial using a canula. The same reaction conditions 

described for the first cycle were employed during subsequent cycles.  

Analysis of the products. The product aliquots were dissolved in deuterated chloroform 

(CDCl3) and the corresponding 1H NMR spectra were obtained using a Varian Unity 

spectrometer (Varian Associates, Palo Alto, CA) operating at 300 MHz. The yield of 

conjugated products from the isomerization of carbon-carbon double bonds in triglycerides 

can be easily determined by 1H NMR spectroscopy.26 Indeed, after normalization of the 

spectra with respect to the methylene protons of the glycerol unit (4.0-4.3 ppm), the final 

yield of conjugated product (C) can be calculated using the following equation: 

C = (B – H) x 100; 

where B corresponds to the disappearance of the bisallylic protons at 2.7-2.8 ppm relative to 

the starting material, and H is a measurement of the carbon-carbon double bonds 

hydrogenated during the reaction. B can be defined by: 

B = 1 – (b'/b); 
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where b' and b are the areas of the peaks related to the bisallylic protons in the products and 

in the starting material, respectively. H, on the other hand, is calculated through: 

H = 1 – [(d'-1)/(d-1)]; 

where d' and d are the areas of the peaks related to the vinylic protons (5.1-6.4 ppm) in the 

products and in the starting material, respectively. It is noteworthy that the formula used to 

calculate H takes into account the methyne hydrogen from the glycerol unit, which generates 

a peak in the 5.0-5.5 ppm range in the 1H NMR spectrum. Figure 2 shows an example of the 

1H NMR spectra of non-conjugated and conjugated soybean oils with the corresponding 

assigned peaks. 

 

 
Figure 2. 1H NMR spectra of: a) regular soybean oil along with the corresponding chemical 
structure and peak assignments, and b) conjugated soybean oil along with the corresponding 

chemical structure and peak assignments. 
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 For the ICP-MS analysis, the aliquots from selected samples were first dissolved in 2-

propanol to give a final concentration of 1 mg/mL of the products. These solutions 

underwent then an 11 fold dilution in 1% HCl before the analysis. The analyses were 

performed on a Thermo Finnigan Element ICP-MS spectrometer, and the experimental 

parameters were set as 1150 W forward power, 1.02 L/min. carrier gas flow, 100 µL/min. 

sample flow rate, using an ESI self-aspirating nebulizer. 

 For the GC/MS analyses, the aliquots were dissolved in chloroform to give an 

approximate concentration of 0.2 mg/mL. For the triglycerides analyzed, a 200 mg aliquot of 

the products was initially mixed with 2 mg of NaOH and 0.3 mL of MeOH at 50 ˚C. After 2 

hours the mixture was cooled to room temperature and 1 mL of chloroform was added. After 

phase separation, the organic product was checked by 1H NMR spectroscopy to verify that 

the triglyceride was successfully converted into the corresponding methyl esters. The sample 

was then appropriately diluted for the GC/MS analysis as mentioned above. The prepared 

solutions were manually injected in a Varian 3400 gas chromatograph (Palo Alto, CA) 

coupled to a Magnum GCMS ion-trap mass spectrometer. A 30.0 m J&W DB-5 column from 

Agilent (Santa Clara, CA) with 0.25 mm internal diameter and 0.25 µm film thickness 

capillary column was used as the stationary phase and the following temperature program 

was used for all samples: 160-200 ˚C (at 10 ˚C/min.), 200 ˚C for 6 min., 200-220 ˚C (at 10 

˚C/min.), 220-230 ˚C (at 5 ˚C/min.), 230 ˚C for 1 min., 230-280 ˚C (at 30 ˚C/min.), and 280 

˚C for 3 min. MassLynx software and data-base were used to identify each peak in the 

chromatograms obtained, and the areas under the peaks were used to determine the 

concentration of each compound.  
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Results and Discussion 

Screening of reaction conditions. As mentioned earlier, the procedure developed by the 

Larock group for the isomerization of carbon-carbon double bonds using a homogeneous 

catalyst is very efficient, but not practical on a large scale or industrially.24 In order to 

convert that catalyst into a complex able to operate under biphasic conditions, water-soluble 

ligands, such as tppms and dppba, have been introduced into the reaction system to replace 

ttp. Although the goal of this work is not to investigate the mechanistic aspects of the catalyst 

formation and the conjugation/isomerization reactions, a proposed, plausible mechanism for 

the in situ formation of the active catalyst and the conjugation of carbon-carbon double bonds 

in dienes is given in Figure 3. 

 The first step depicted in Figure 3 is the reduction of Rh3+ and formation of the pre-

catalyst [RhCl(C8H14)2]2. Secondly, a ligand exchange results in the dimer [RhCl(tppms)2]2, 

which brakes down into [Rh(tppms)2]+ after abstraction of Cl- by the strong Lewis acid SnCl2 

• 2H2O. The active metal hydride, readily formed in the presence of ethanol, is assumed to 

add across one carbon-carbon double bond and, subsequently, to eliminate a hydride from an 

adjacent carbon. The overall process results in a conjugated product. 

 The results of the isomerization reactions of soybean oil, carried out under various 

conditions, are presented in Table I. Soybean oil has been chosen as the model system to 

screen several reaction conditions due to the easy identification of its isomerization products 

using 1H NMR spectroscopy, as explained earlier.26 
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Figure 3. Proposed reaction mechanism for in situ formation of the presumed active catalyst 

[RhH(tppms)2] and conjugation of the carbon-carbon double bonds in dienes. 
 

Initially, water was chosen as the polar phase to carry out the isomerization of the 

carbon-carbon double bonds in soybean oil (entries 1 and 2, Table I). Due to a significant 

difference in polarity between water and soybean oil, no isomerization products were  
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Table I. Screening of reaction conditions for the isomerization of soybean oil. 

 

Entrya Temp. 
(oC) Gas Pre-catalyst 

(0.5 mol %) 
Ligand  

(2 mol %) 
EtOH 
(mL) 

Water 
(mL) 

Surfactant  
(0.1 mol%) 

Yield 
(%)b 

1 60 Ar [RhCl(C8H14)2]2 tppms - 5.0 - 0 
2 60 Ar [RhCl(C8H14)2]2 dppba - 5.0 - 0 
3 60 Ar [RhCl(C8H14)2]2 tppms 2.5 2.5 - 0 
4 60 Ar [RhCl(C8H14)2]2 dppba 2.5 2.5 - 0 
5 60 Ar [RhCl(C8H14)2]2 tppms 5.0 - - 48 
6 60 Ar [RhCl(C8H14)2]2 dppba 5.0 - - 6 
7 60 Ar [RhCl(C8H14)2]2 tppms 5.0 - SDS 76 
8 60 Ar [RhCl(C8H14)2]2 tppms 5.0 - CTAB 25 
9 60 Ar [RhCl(C8H14)2]2 tppms 5.0 - Brij 700 20 
10 60 Ar [RhCl(C8H14)2]2 tppms 5.0 - Brij 76 24 
11 60 Ar [RhCl(C8H14)2]2 tppms 5.0 - PTS 0 
12 60 Ar RhCl3•xH2O tppms 5.0 - SDS 0 
13 60 Ar RuCl3•nH2O tppms 5.0 - SDS 0 
14 40 Ar [RhCl(C8H14)2]2 tppms 5.0 - SDS 28 
15 80 Ar [RhCl(C8H14)2]2 tppms 5.0 - SDS 89 
16 80 air [RhCl(C8H14)2]2 tppms 5.0 - SDS 0 

a Reaction carried out at 60 ˚C in 5.0 mL of EtOH, using 0.5 mol % of [RhCl(C8H14)2]2, 2.0 
mol % of tppms, and 0.1 mol % of SDS, under argon. 

b No significant yield of hydrogenated products has been detected. 

 

detected, no matter what the ligand used. Indeed, it is believed that the surface tension 

between the two phases prevented the catalyst from mixing with the substrate even upon 

agitation at 60 ˚C. In an attempt to reduce the difference in polarity between the two phases, 

a 1:1 mixture of water and EtOH has been used as the polar solvent (entries 3 and 4, Table I) 
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with no significant formation of conjugated products. When EtOH is used as the sole polar 

solvent, a 48% yield of conjugated product is obtained in the presence of the ligand tppms 

(entry 5, Table I). When dppba is used as the ligand, a very low 6% yield of conjugated 

product results (entry 6, Table I), possibly due to its higher solubility in polar solvents. The 

ligand triphenylphosphine-3,3',3''-trisulfonic acid trisodium salt (tppts) hasn't been tried 

because of its higher solubility in polar solvents. 

 Problems in aqueous/organic biphasic catalysis are mainly related to poor miscibility 

of the phases. This is especially true for reactions involving higher olefins or non-polar 

molecules having twelve or more carbon atoms, for which the immiscibility of the catalyst 

solution yields very low reaction rates.34 Indeed, in those cases, the contact between catalyst 

and substrate is very limited, and to solve this issue, surfactants are normally added to lower 

the surface tension and increase the contact/miscibility. Among the surfactants investigated, 

anionic SDS gives the highest yield (entry 7, Table I). The cationic surfactant CTAB, and the 

neutral, non-ionic, Brij-based surfactants yield 20-25% of conjugated soybean oil (entries 8-

10, Table I). The use of the surfactant solution known as PTS results in no conjugated 

products (entry 11, Table I), possibly due to the presence of water in the commercial version 

of the surfactant. 

 As mentioned before, the whole concept of the biphasic catalyst developed in this 

work is based on substitution of the ligand in a homogeneous catalyst previously studied.26 In 

an attempt to skip the synthesis of the pre-catalyst [RhCl(C8H14)2]2 and still have a one-pot 

procedure, the direct use of RhCl3•xH2O as the rhodium source has been investigated, but no 

conjugated products have been detected after 24 hours (entry 12, Table I). Similarly, 
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RuCl3•nH2O has been used to replace the pre-catalyst and once again no conjugated products 

have been detected (entry 13, Table I). 

 As expected, the efficiency of the reaction depends greatly on the temperature. There 

is a significant decrease in the yield of conjugated product when the reaction temperature is 

lowered to 40 ˚C (entry 14, Table I). On the other hand, an increase in the reaction 

temperature from 60 ˚C to 80 ˚C results in an increase in the yield of conjugated product 

from 76% to 89% (entries 7 and 15, respectively). If the reaction is run under air (entry 16, 

Table I), instead of argon, no conjugation occurs, most likely due to oxidation of the 

phosphine ligands in the presence of the O2 from the air. Although this is a very plausible 

explanation, the final catalyst solution hasn't been tested for the presence of phosphine oxide 

to confirm that hypothesis. 

 Since the polarity of the solvent is of major relevance to the efficiency of the process 

being investigated, several alcohols, with varying carbon chain lengths, have been tested and 

the results are presented in Table II. Because of the low boiling point of the shorter chain 

alcohols, a temperature of 60 ˚C has been used for all alcohols. 

 As expected, the yield of conjugated soybean oil in the presence of MeOH was lower 

than that obtained with EtOH (entries 1 and 2, Table II). Indeed, the higher polarity of shorter 

chain alcohols compromises their miscibility with the substrate, resulting in a lower yield for 

the reaction. When alcohols containing three or more carbons are used (entries 3-5, Table II), 

the catalyst solution becomes completely miscible with the soybean oil, and no conjugated 

products are obtained. In view of these results, EtOH is the ideal solvent to run the biphasic 

isomerization of soybean oil.  
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Table II. Conjugation of soybean oil under biphasic conditions in the presence of various 
alcohols. 

 

Entrya Alcohol (5 mL) Yield (%) 
1 MeOH 21 
2 EtOH 76 
3 PrOH 0 
4 iPrOH 0 
5 tBuOH 0 

a Reaction carried out at 60 ˚C in 5.0 mL of EtOH, using 0.5 mol % of [RhCl(C8H14)2]2, 2.0 
mol % of tppms, and 0.1 mol % of SDS, under argon. 

 

In order to illustrate the quick deactivation of the catalyst during the reaction, aliquots 

of the reaction mixture were taken, using a glass syringe, at pre-determined time 

intervals.The yield of conjugated product from each aliquot was determined immediately 

after its collection by means of 1H NMR spectroscopy, as discussed earlier. A curve of the 

reaction yield versus reaction time is presented in Figure 4. It is noticeable that the catalyst is 

significantly deactivated after eight hours of reaction with a yield of conjugated product of 

approximately 70%. During the following 16 hours, only a slight increase of 6% in the yield 

is detected. 

Optimization of reaction conditions. The use of surfactants makes the loss of the metal to 

the products more likely, which may account for a decrease in the catalyst's activity upon 

reuse. To solve this new issue, an excess of the water-soluble ligand (tppms) is most likely  

  



www.manaraa.com

  181 

 

 
Figure 4. Yield of conjugated product versus reaction time for the biphasic conjugation of 

soybean oil. 
 

necessary to prevent metal leach and improve the recyclability of the catalyst. An 

optimization study of the reaction conditions is presented in Table III. Factors, such as the 

amount of EtOH, the catalyst concentration, the amount of surfactant, the ligand/pre-catalyst 

ratio, and the surfactant/ligand ratio have been varied in order to determine the optimum 

conditions for the conjugation of soybean oil. 

 Maintaining the amount of pre-catalyst at 0.5 mol %, the amount of the ligand tppms 

at 2.0 mol %, and the amount of SDS at 0.1 mol %, the concentration of the catalyst solution 

has been changed by varying the volume of EtOH used in the reaction (entries 1-3, Table III). 

A decrease in the yield of the reaction from 89% to 18% is noticed with increasing volumes 

of EtOH, which corresponds to a decrease in the catalyst concentration. Obviously, when 

higher volumes of EtOH are used, there is reduced contact between the catalyst and the 

substrate during the reaction, so lower reaction rates are expected, which explains the lower 
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yields obtained after 24 hours. If a volume of EtOH lower than 5 mL is used, the solubility of 

the catalyst in the polar phase is compromised and erratic data is obtained (not shown in 

Table III). 

 
Table III. Optimization of reaction conditions for the conjugation of soybean oil. 

 

Entry [RhCl(C8H14)2]2 
(mol%) tppms (mol%) EtOH (mL) SDS (mol%) Yield (%) 

1 0.5 2.0 5.0 0.1 89 
2 0.5 2.0 10.0 0.1 49 
3 0.5 2.0 15.0 0.1 18 
4 0.5 2.0 5.0 0.2 95 
5 0.5 2.0 5.0 0.3 88 
6 0.5 1.5 5.0 0.2 56 
7 0.5 2.5 5.0 0.2 96 
8 0.5 3.0 5.0 0.2 90 
9 0.2 0.8 2.0 0.2 0 
10 0.3 1.2 5.0 0.2 14 
11 0.4 1.6 5.0 0.2 35 

 

 Establishing the optimum volume of EtOH at 5 mL, and keeping the amount of the 

pre-catalyst constant at 0.5 mol %, and the amount of the ligand tppms constant at 2.0 mol %, 

the effect of varying the amount of SDS has been evaluated. An increase in the amount of 

SDS from 0.1 mol % to 0.2 mol % results in an increase in the yield of conjugated product 

from 89% to 95% (entries 1 and 4, Table III). This improvement in the reaction efficiency 
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shows that a higher concentration of surfactant helps to minimize the surface tension between 

the two phases and therefore results in better exposure of the catalyst to the substrate 

molecules. When the amount of surfactant is increased to 0.3 mol %, the yield of the reaction 

drops to 88% (entry 5, Table III), indicating that the excess of SDS favors the formation of 

micelles, and it no longer improves the catalyst/substrate contact. 

 Fixing the amount of SDS at its optimum value of 0.2 mol %, and keeping the amount 

of the pre-catalyst constant at 0.5 mol %, the ligand/pre-catalyst ratio has been changed by 

varying the amount of ligand introduced into the reaction system. Up to this point, a 

ligand/pre-catalyst ratio of 4 has been used, and the optimum conditions are represented by 

entry 4 in Table III. Reducing the ligand/pre-catalyst ratio to 3 results in a decrease in the 

yield of the reaction to 56% (entry 6, Table III). In this case, it appears that there is an 

insufficient amount of ligand to keep the metal in the polar phase. According to the reaction 

mechanism presented in Figure 3, each equivalent of the pre-catalyst [RhCl(C8H14)2]2 results 

in two equivalents of the active catalyst [RhH(tppms)2] needed for conjugation. Ideally, a 

ligand/pre-catalyst ratio of 4 would be required to maintain all of the rhodium in the polar 

phase. However, as discussed earlier, an excess of the ligand may be necessary to 

compensate for the use of a surfactant that helps to improve the miscibility between the 

catalyst solution and the substrate. When a ligand/pre-catalyst ratio of 5 is used (entry 7, 

Table III), the yield increases slightly to 96%, and if the ligand/pre-catalyst ratio is 6 (entry 8, 

Table III), the yield drops to 90%. These results match very well with the expected trends. 

Considering the cost-effectiveness of the process, a ligand/pre-catalyst ratio of 4 is 

considered the ideal value. 
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 Once the optimum ligand/pre-catalyst ratio has been established, an attempt has been 

made to reduce the amount of pre-catalyst used by decreasing the volume of the catalyst 

solution, but still maintaining the same ligand/pre-catalyst ratio and the same catalyst 

concentration (entry 9, Table III). In that case, the low volume of catalyst solution 

compromised the phase separation of the system and no conjugated product was detected. 

When a higher concentration of the catalyst is used (entries 10 and 11, Table III) with a 

ligand/pre-catalyst ratio of 4 and a volume of EtOH equal to 5 mL, very low yields are 

obtained. After these reactions, a precipitate was found at the bottom of the reaction flask. 

The low yields are attributed to coagulation and precipitation of the catalyst during the 

reaction at those high concentrations, which indicates poor solubility of the catalyst in EtOH 

beyond a rhodium concentration of about 0.012 M. 

 In view of the results presented, the optimal conditions for the conjugation of carbon-

carbon double bonds in soybean oil with the proposed system is represented by entry 4, in 

Table III. An assessment of the catalyst's recyclability is addressed next. 

Catalyst recycle and reuse. In order to evaluate the potential for catalyst recycle and reuse, 

and to further understand the trends observed in Table III, ICP-MS analysis of the products 

of five selected samples has been carried out to determine the amount of rhodium that 

leached from the catalyst solution into the products. The results, summarized in Table IV, 

reveal that the yield of conjugated products depends greatly on the miscibility of the two 

phases in the system, as well as the stability of the catalyst in the polar phase. For instance, 

the decrease observed in the yield, when the volume of EtOH was increased from 5 mL to 10 

mL (entries 1 and 2, Table IV), has been attributed to poorer miscibility between the catalyst 
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solution and the substrate for higher volumes of polar solvent. From the ICP-MS results, it is 

indeed clear that a significantly lower concentration of Rh is found in the products when a 

higher volume of EtOH is used. This confirms that there is less contact between substrate 

molecules and the catalyst species when using higher solvent volumes. 

 
Table IV. ICP-MS results for selected samples. 

 

Entry [RhCl(C8H14)2]2 
(mol%) 

tppms 
(mol%) EtOH (mL) SDS 

(mol%) 
Rh Conc. 

(ppm) 
Yield 
(%) 

1 0.5 2.0 5.0 0.1 69.45 89 
2 0.5 2.0 10.0 0.1 4.50 49 
3 0.5 2.0 5.0 0.2 21.95 95 
4 0.5 1.5 5.0 0.2 53.34 56 
5 0.5 3.0 5.0 0.2 22.00 90 

 

 Surprisingly, when an increased amount of the surfactant SDS is used at constant 

EtOH volume (entries 1 and 3-5, Table IV), less Rh is found among the products. Although 

this could explain the improved yield observed for entry 3 (Table IV), it is still not obvious 

how a surfactant can decrease metal leaching during a biphasic reaction. It is possible that by 

decreasing the surface tension between the two phases, the surfactant promotes an easier 

transfer of the catalyst from one phase to the other, so the Rh complex can more easily 

interact with the substrate in the non-polar phase, and return to the polar solution, where it 

exhibits higher solubility and stability. 
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 Changes in the amount of the EtOH-soluble ligand tppms directly affect the stability 

of the catalyst in the polar phase, and, as a consequence, the yield of the reaction (entries 3-5, 

Table IV). When the amount of tppms is reduced from its optimum value (entries 3 and 4, 

Table IV), more Rh leaches into the products, which ultimately affects the yield of the 

reaction. On the other hand, when an excess of tppms is employed (entry 5, Table IV) in the 

reaction, there is a tendency for the Rh particles to stay in the polar phase, and once again the 

contact between catalyst and substrate may be slightly compromised. This has a slight impact 

on the yield of the reaction, but does not change the amount of Rh found in the products. 

 After optimization of the reaction conditions, attempts at recycling and reusing the 

catalyst have been made. The experimental conditions employed for the second cycle of the 

catalyst and the corresponding results are described in Table V. 

 
Table V. Recycling results. 

 

Entry Additions for 2nd cycle Yield (%) 
1a - 95 
2 - 18 
3 2.0 mol % tppms 11 
4 0.2 mol % SDS 21 
5 0.2 mol % SDS + 2.0 mol % tppms 18 

a First cycle of catalyst under optimized conditions. 

 



www.manaraa.com

  187 

 

 A significant decrease in the catalyst's activity has been detected after the first cycle 

(entries 1 and 2, Table V). Although the specific reasons for such a drop in activity are 

currently unknown, coagulation and precipitation of the catalyst have been observed within 

the first three hours of reaction during the second cycle. It is believed that coagulation of the 

catalyst is a result of reduction of Rh(I) under the reaction conditions, which would be 

responsible for deactivation of the catalyst. In an attempt to avoid such a rapid deactivation, 

fresh tppms has been added to the system for the second cycle (entry 3, Table V), but the 

yield obtained was even lower than the recycle carried out without addition of extra ligand. 

Indeed, the extra tppms added had an effect similar to that observed in entry 5, Table IV, 

where the catalyst had a tendency to stay in the polar phase, making the interaction between 

substrate and catalyst more difficult. The addition of fresh SDS (entry 4, Table V) slightly 

improved the yield upon catalyst recycle. In this case, it is possible that the extra surfactant 

added compensates for any SDS removed from the system with the products of the first 

cycle. Finally, addition of both SDS and tppms in the second cycle does not result in any 

improvement in the yield of conjugated product, indicating that the effects of both additions 

cancel each other out. 

 Another possibility for the dramatic loss in activity is Rh leaching into the products 

during the reaction. However, for the first cycle of the catalyst under optimized conditions, 

only 4% of the Rh initially added as catalyst has been found in the products (entry 3, Table 

IV). Deactivation of the catalyst by complexation with the surfactant is also possible. In fact, 

the exact deactivation mechanism for the catalyst remains unknown for the time being. This 

problem is part of our future research efforts on the development of more efficient catalysts 

for the conjugation of carbon-carbon double bonds. 
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Other substrates tested. In order to evaluate the scope of the biphasic procedure, 

unsaturated molecules other than soybean oil have been submitted to the reaction conditions 

optimized for the model system. The results shown in Table VI for a range of natural oils, as 

well as for methyl linoleate, and shorter chain dienes and alpha-olefins, have been obtained 

through 1H NMR spectroscopic and GC-MS analysis of the corresponding product mixtures. 

 All of the vegetable oils used in this study have approximately the same molecular 

weight, with structures differing only in the number and distribution of the carbon-carbon 

double bonds in the fatty acid chains. On average, sunflower oil has 4.8 carbon-carbon 

double bonds per molecule, while peanut oil has 2.3 double bonds. The corresponding 

number for sesame oil is 3.6, and, for soybean, linseed, grape seed, and olive oils, the 

numbers are 4.5, 6.2, 3.4, and 2.4, respectively. Among the natural oils tested as substrates 

for the biphasic conjugation of carbon-carbon double bonds, fish oil is the only one with a 

significantly different structure. It possesses longer fatty acid chains overall and an average 

of 3.6 carbon-carbon double bonds per triglyceride. Although the number and distribution of 

carbon-carbon double bonds in the different natural oils has a great impact on their flavor, 

color, viscosity, and nutritional value, there is no direct correlation between the number of 

carbon-carbon double bonds per molecule and the yield of conjugated products. Indeed, 

complete conjugation of the carbon-carbon double bonds has been observed for sunflower, 

peanut, and sesame oils (entries 1-3, Table VI). Soybean and linseed oils exhibit high, but 

incomplete conversion. In fact, a 95% yield of conjugated products has been obtained for 

those oils (entries 4 and 5, Table VI). Grape seed, fish, and olive oils are conjugated less 

efficiently (entries 6-8, Table VI). Although relatively high yields of conjugated oils have 
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Table VI. Conjugation/isomerization results for various substrates under our “optimized” 

reaction conditions. 

 

Entry Substrate Conversion (%) Conjugated Products 
(%)a 

Non-conjugated 
Isomers (%)b 

1 sunflower oil 100 100 0 
2 peanut oil 100 100 0 
3 sesame oil 100 100 0 
4 soybean oil 95 95 0 
5 linseed oil 95 95 0 
6 grapeseed oil 88 88 0 
7 fish oil 82 82 0 
8 olive oil 71 71 0 
9 methyl linoleate 52 52 0 
10 1,5-cyclooctadiene 100 73c 25d 

11 1,4-cyclohexadiene 100 0 100e 

12 trans-isolimonene 6 6 0 
13 1,7-octadiene 57 2 55 
14 1,5-hexadiene 76 19 23f 

15 1-decene 40 - 40 
16 1-nonene 79 - 79 
17 1-heptene 51 - 51 

a Mixture of all isomers where the carbon-carbon double bonds are conjugated. 
b Mixture of all isomers (excluding any unreacted starting material) where the carbon-carbon 

double bonds are not conjugated. 
c Bi-1-cycloocten-1-yl has been detected as the major product for the reaction. 
d A 2% yield of cyclooctene has been detected by GC-MS. 
e Bi-1-cyclohexen-3-yl has been detected as the major product for the reaction. 
f A 34% yield of unidentifiable products have been detected by GC-MS. 
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been obtained with the process reported here, it is unclear to us, at the moment, the reasons 

for the differences obtained for the different oils examined. Similar trends for the percent 

conjugation of various vegetable oils have also been observed when our earlier homogeneous 

catalyst was employed.24 

 A significant decrease in the yield of conjugated products is observed when methyl 

linoleate is employed as the substrate (entry 9, Table VI). The lower molecular weight of 

methyl linoleate, when compared to the natural oils tested (entries 1-8, Table VI), may, in 

fact, compromise the phase separation of the system, which is crucial for the catalyst to work 

properly, as noted in Table II, when longer chain alcohols have been used as the polar phase. 

Although a clear phase separation is still observed in the EtOH/methyl linoleate mixture, it is 

believed that a significant portion of methyl linoleate is miscible with the polar phase, 

resulting in a lower yield of conjugated product. 

 When cyclic dienes are exposed to the optimized reaction conditions, complete 

reaction of the substrates is observed (entries 10 and 11, Table VI). In these cases, however, a 

coupling product is formed preferentially. For the reaction of 1,5-cyclooctadiene, 73% of the 

products consist of bi-1-cycloocten-1-yl, a conjugated diene, that is most likely formed 

through initial conjugation of the carbon-carbon double bonds in the starting material, 

followed by the coupling of two units. An hydrogenation step is also required during the 

process to yield the observed major product. Besides the observed coupling product, 25% of 

the reaction mixture contains non-conjugated positional isomers of 1,5-cyclooctadiene. In 

addition, a small percentage (2%) of cyclooctene is detected among the products. The 

reaction of 1,4-cyclohexadiene affords bi-1-cyclohexen-3-yl as the only observed product. In 
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this case, however, the final product is not conjugated, and no hydrogenated products have 

been detected. The mechanism of these coupling reactions hasn't been thoroughly 

investigated in this work. Therefore, any assumptions about the steps involved in formation 

of the observed products is pure speculation. When trans-isolimonene was submitted to the 

optimized reaction conditions (entry 12, Table VI), only 6% of the starting material is 

converted into the conjugated species 1-methyl-4-isopropyl-1,3-cyclohexadiene. In this case, 

the vast majority of the starting material (94%) remained unreacted. 

 When linear dienes, such as 1,7-octadiene and 1,5-hexadiene, are employed as 

substrates (entries 13 and 14, Table VI), a mixture of several possible positional isomers is 

observed. In the case of 1,7-octadiene, the final mixture contained 23% of 1,6-octadiene, 

21% of 1,4-octadiene, 8% of 2,6-octadiene, 2% of 2,4-octadiene, 2% of 1,5-cyclooctadiene, 

and 1% of cyclooctene, besides 43% of unreacted starting material. This product distribution, 

along with the long reaction time required, suggests a very low activity for our Rh catalyst 

with such dienes. In fact, the major product is one where only one carbon-carbon double 

bond has moved from its original position to the adjacent carbon. In that regard, it is not 

surprising that the natural oils investigated (entries 1-8, Table VI) gave, overall, much higher 

conversion and yields of conjugated products, since the carbon-carbon double bonds in those 

triglycerides are naturally separated by only one methylene group. Along the same lines, the 

reaction of 1,5-hexadiene affords 14% of 1,4-hexadiene, 11% of 1,3-hexadiene, 9% of 

cyclohexene, 8% of 2,4-hexadiene, and 34% of other unidentified compounds, besides 24% 

of unreacted starting material. Similarly, alpha-olefins react under the optimized conditions 

to give a number of possible positional isomers (entries 15-17, Table VI), with the majority 

closely resembling the starting material. 1-Decene, for instance, afforded 19% of 2-decene, 
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16% of 3-decene, 3% of 4-decene, and 2% of 5-decene, besides 60% of unreacted starting 

material. In the case of 1-nonene, the final mixture was composed of 39% of 2-nonene, 35% 

of 3-nonene, and 5% of 4-nonene, besides 21% of the starting material. For 1-heptene, the 

product mixture contained 29% of 2-heptene, 23% of 3-heptene, and 49% of the starting 

material. 

 With the exception of 1,5-cyclooctadiene, little or no hydrogenation has been 

detected for any of the substrates tested. It is also noteworthy that the reaction conditions 

have been initially optimized using soybean oil as the model system. Since biphasic reactions 

are extremely sensitive to the miscibility of the catalyst solution and the substrates, it is 

expected that significant changes in the activity of the catalyst would result when substrates 

with different structures are used. The difference is not so significant for the various natural 

oils tested due to their similar chemical structures, but factors, such as the amount of EtOH, 

the catalyst concentration, the ligand/metal ratio, the reaction time, and the temperature may 

need to be adjusted for each individual substrate in order to give the highest yield of 

conjugated products possible. An alternative is immobilization of the rhodium catalyst on an 

inorganic support to form a heterogeneous tethered catalyst. This approach is under active 

investigation. 

Conclusions 

 In this work, we have successfully converted a known and active homogeneous 

rhodium catalyst into a biphasic system for the conjugation of carbon-carbon double bonds. 

The biphasic reaction developed involves a polar catalyst solution and a non-polar phase 

composed of the substrate. The new catalytic system has the advantage of easy product 
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isolation and catalyst recycle, using simple liquid/liquid separation techniques, although 

catalyst recycle has not yet proven to be an efficient process. The research effort reported in 

this work constitutes the first steps leading to a technology that can significantly reduce the 

costs and the environmental impact of catalytic carbon-carbon double bond conjugation 

processes requiring expensive rare metal species. The process has been optimized using 

soybean oil as the model system and screening various reaction conditions. A maximum 

yield of 96% has been obtained when the reaction is run at 80 ˚C under argon with ethanol as 

the polar solvent, using tppms as the ligand, and SDS as the surfactant. The optimized 

reaction conditions have been tested with other substrates, including various natural oils, 

cyclic and linear dienes, and alpha olefins. The products have been analyzed by 1H NMR 

spectroscopy, and GC/MS and ICP-MS analysis. The results obtained give some insight 

about the reactivity of the catalyst. They indeed suggest a very low activity for our Rh 

catalyst with dienes in general. In fact, significant conjugated products are only observed for 

starting materials where the carbon-carbon double bonds are separated by a single methylene 

group. 
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CHAPTER 9. GENERAL CONCLUSIONS 

This dissertation discusses several aspects of the preparation of bio-based composites 

made from various natural oil-based resins reinforced with ligno-cellulosic residues. Each 

one of the projects covered here focuses on a specific filler and has the goal of studying the 

influence of parameters, such as filler load, cure conditions, and resin composition, in the 

final mechanical properties of the bio-based composites. The information gathered in the 

study of one particular system is used on following projects to tailor the focus of the 

parameters investigated. The structure-property relationships determined for different 

systems provides us a broader base of knowledge on bio-based composites. The fillers 

investigated include soybean hulls, rice hulls, wood flours, wood fibers, sugar-cane bagasse, 

and oat hulls. 

The development of a recyclable rhodium-based catalyst for the 

isomerization/conjugation of carbon-carbon double bonds in triglycerides is also addressed in 

this dissertation. The outcomes of this project may be quite valuable for future research in 

biphasic catalysis, as well as in the preparation of more affordable bio-based polymers. 

The biocomposites investigated in Chapter 2 consist of a conjugated soybean oil-

based resin reinforced with soybean hulls. An initial cure study revealed that heating the 

composite for 5 hours at 130 oC, followed by a post-cure at 150 oC for 2 hours resulted in the 

best mechanical properties. It is also observed that the properties of the composites tend to 

decrease whenever good dispersion of the filler in the matrix is compromised by factors such 

as filler/resin ratio or filler particle size. As the pressure applied during cure is increased up 

to 276 psi, an overall increase in the mechanical properties is observed. Beyond that point, 
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the properties decrease with increasing pressures. A phase separation of the matrix occurs 

upon cure due to a difference in the reactivity of CSO and the other resin components 

towards free radicals, suggesting that better results might be achieved by using more reactive 

oils, such as conjugated linseed oil. In terms of resin composition, a significant dependence 

of the properties on the DVB content is observed. Replacement of DVB by DCPD affects 

considerably the mechanical properties due to differences in the reactivity of these two 

compounds. 

As part of the same project, Chapters 3 and 4 involve a study of rice hull composites 

prepared from a more reactive oil, CLO. While Chapter 3 is concerned with physical aspects 

of the system, such as cure analysis, pressure, filler load, pre-treatment of the filler (drying 

and grinding), Chapter 4 focuses on chemical aspects related to the resin composition, with 

special attention given to the incorporation of maleic anhydride as a filler-resin 

compatibilizer. 

The results presented in Chapter 3 indicate an optimal cure temperature of 180 ˚C, 

and it has been shown that the post-cure step is crucial in order to get a fully cured resin and 

the best CLO incorporation into the matrix. A pressure of 600 psi during the cure has resulted 

in the stiffest material. The use of 70 wt % of dried and ground rice hulls affords the best 

overall properties. SEM analysis provides evidence of a weak filler-resin interaction due to 

differences in the hydrophilicity of the matrix and the reinforcement. A Si X-ray map of the 

composites indicated the presence of significant amounts of silica in the rice hulls, which 

may account for the high thermal stability and mechanical properties obtained. 
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The variations introduced in the resin composition of rice hull composites in Chapter 

4 include a comparison of CLO and CSO as the major resin components. The results show 

that composites made from CLO exhibit better overall properties than those made from CSO. 

The relative amounts of BMA, DVB, and MA have also been varied. The data obtained show 

an overall improvement in the composites' properties whenever MA is added as a co-

monomer in the resin. MA acts as a compatibilizer between the filler particles and the matrix. 

These results have been corroborated by SEM images showing a better filler-resin interaction 

when the matrix contains MA. 

Bio-based composites made from either conjugated soybean oil- or conjugated 

linseed oil-based thermosets reinforced with pine, maple, and oak flours, and a mixture of 

hardwood fibers is the subject of Chapter 5. Initial experiments with pine wood flour 

composites indicated that a filler load of 80 wt % is the most practical for the preparation of 

wood flour composites. Little variation in the mechanical properties was observed when the 

cure time varied from 30 minutes to 5 hours. TGA and DSC analyses indicate that this is a 

result of factors that compensate for each other. While longer cure times help to completely 

cure the resin and tend to increase crosslink density and monomer incorporation into the 

matrix, they are also responsible for partial degradation of the filler, negatively impacting the 

mechanical properties. Composites reinforced with mixtures of flours containing oak exhibit 

worse mechanical properties than those containing exclusively pine flour. Finally, a 

comparison between wood fiber and wood flour composites indicates that the composites 

reinforced with fibers show significantly better mechanical properties. 
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In Chapter 6, CSO-, CLO-, and tung oil-based thermosets reinforced with sugar-cane 

bagasse have been prepared and studied. An initial cure sequence evaluation showed that the 

changes in mechanical properties, observed when the sample is cured under different 

temperatures and times, are related to the thermal stability of the filler. Furthermore, the post-

cure step has a great impact on the crosslink density of the resin. An optimum filler load of 

60 wt % results in the most thermally stable and viable composites. Better properties are 

usually obtained when more unsaturated oils are used as the major resin component. It has 

been shown that the initial washing and drying of the sugar-cane bagasse affect the filler-

resin interaction and result in a phase separation of the matrix, independent of the oil used. 

Also, with a better interaction between resin and filler, MA no longer acts as a compatibilizer 

in the system, and an overall decrease in storage modulus is observed whenever MA is added 

to the resin composition. 

The focus of Chapter 7 is the preparation and investigation of oat hull composites 

from various conjugated natural oils. An initial cure temperature study showed that a 

temperature of 160 ˚C is sufficient to completely cure the resin without severely damaging 

the filler. After taking into consideration practical aspects involved in the preparation of the 

composites and the mechanical data obtained, a filler load of 80 wt % was chosen as optimal 

for this particular system. The cure time has also been investigated and it has been shown 

that a 4 hour cure is ideal for oat hull composites. Finally, it has been observed that 

composites with better properties are formed when tung oil is used as the major resin 

component. 
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In Chapter 8, the successful conversion of a known and active homogeneous rhodium 

catalyst into a biphasic system for the conjugation of carbon-carbon double bonds in 

triglycerides is presented. The biphasic reaction developed involves a polar catalyst solution 

and a non-polar phase composed of the substrate. The new catalytic system has the advantage 

of easy product isolation and catalyst recycle, using simple liquid/liquid separation 

techniques. This technology can significantly reduce the costs of catalytic carbon-carbon 

double bond conjugation processes that require expensive rare metal species. The process has 

been optimized using soybean oil as the model system and a maximum yield of 96% has 

been obtained when the reaction is run at 80 ˚C under argon with ethanol as the polar solvent, 

using tppms as the ligand, and SDS as the surfactant. The optimized reaction conditions have 

been tested with other substrates, including various natural oils, cyclic and linear dienes, and 

alpha olefins. The results obtained suggest a very low activity of the catalyst with dienes in 

general. In fact, significant conjugated products are only observed for starting materials 

where the carbon-carbon double bonds are separated by a single methylene group. 

 The technology developed for the use of vegetable oils in the preparation of diverse 

bio-based materials, such as thermosetting resins and composites, is tremendously useful and 

the research effort in that area is expanding rapidly. Bio-based thermosets with a wide range 

of properties have been prepared from regular and modified oils by their free radical, 

cationic, thermal, and ring opening metathesis polymerization in the presence of various 

vinylic comonomers. In general, a similarity in the reactivities of the comonomers is of great 

importance in maximizing the oil incorporation and the homogeneity of the products 

obtained. 
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 The aforementioned bio-based resins have been reinforced with inorganic and natural 

fillers to afford high bio-based content thermosetting composites. In comparison to the pure 

resins, significant improvements have been obtained in the mechanical properties by the 

addition of the fillers. 

Despite the great accomplishments observed to date in the development of bio-based 

materials, achieving composites with properties similar and sometimes even better than 

commercially available materials, future research efforts in the area should include the design 

of hybrid composites, where inorganic fillers and natural fibers can be used simultaneously 

as reinforcements. In such systems, the beneficial aspects of either kind of reinforcement can 

be combined to yield materials with new and interesting properties. Another area where 

improvements can yield more promising materials is the surface treatment of natural fibers. 

A variety of processes can be tested in an effort to modify the ligno-cellulosic surface of 

natural fillers and afford better filler-resin interactions. 

Other resin systems can also be sought by the incorporation of other comonomers and 

by applying other modifications in the structure of the triglycerides. Improvements on 

recycling the catalysts involved in the conjugation of carbon-carbon double bonds in 

triglycerides will also help the systems discussed here to become more economically viable. 
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